INTRINSIC FUNCTIONS ON MATRICES

BY R. F. RINEHART

1. Introduction. Let \mathfrak{A} be a linear associative algebra, with identity, over a field \mathfrak{F} , and let F be a single-valued function with domain, \mathfrak{D} , and range in \mathfrak{A} . Let \mathfrak{G} be the group of all automorphisms and antiautomorphisms of \mathfrak{A} which leave \mathfrak{F} elementwise invariant.

DEFINITION 1.1. The function F is called intrinsic, if for any $\Omega \in \mathfrak{G}$:

(1) $Z \in \mathfrak{D}$ implies $\Omega Z \in \mathfrak{D}$

(2) $Z \in \mathfrak{D}$ implies $f(\Omega Z) = \Omega f(Z)$.

In other words an intrinsic function is one which admits the group (9) as operator domain.

The concept of intrinsic functions was motivated and introduced in [9], and studied for finite-dimensional algebras \mathfrak{A} over the real and complex fields. It was shown that *primary functions*, i.e. those functions arising from ordinary functions of a complex variable, according to the well-known extension of such functions to linear algebras [8] are always intrinsic. For the algebra of real quaternions it was demonstrated that all intrinsic functions are primary, thereby establishing a complete characterization of intrinsic functions on quaternions.

The goal of the present paper is the characterization of the intrinsic functions on total matrix algebras \mathfrak{M}^n_c of $n \times n$ matrices over the complex field \mathfrak{C} . Essentially complete characterization is achieved for appropriately continuous functions on \mathfrak{M}^n_c . A subclass of these functions yields a class of intrinsic functions on \mathfrak{M}^n_R , the algebra of real matrices.

Since the group \mathfrak{G} for \mathfrak{M}^n_c includes the inner automorphisms, i.e. those given by $T^{-1}\mathfrak{M}^n_c T$ where T is a non-singular complex matrix, the characterization of intrinsic functions on \mathfrak{M}^n_c provides a characterization of general functions of linear transformations on an *n*-dimensional complex vector space.

It turns out that the general intrinsic function for matrices of order n over the complex field is of the form $f(Z, \sigma_1[Z], \dots, \sigma_{n-1}[Z])$ where the $\sigma_i[Z]$ are the first n-1 elementary symmetric functions of the eigenvalues of the argument matrix Z, and where $f(Z, \sigma_1[Z], \dots, \sigma_{n-1}[Z])$ is obtained from the scalar function $f(z, \sigma_1, \dots, \sigma_{n-1})$ of the complex variable z and the n-1 complex parameters $\sigma_1, \dots, \sigma_{n-1}$ in a manner quite analogous to the classical mode of generalization of a function of a single complex variable to a matrix algebra.

Received March 16, 1960. Research supported by Office of Ordnance Research. U. S. Army. Presented to the American Mathematical Society January 29, 1960.