IRREDUCIBILITY OF CERTAIN CLASSES OF LEGENDRE POLYNOMIALS

By R. F. McCoart

Introduction. The Legendre polynomial of degree n is the polynomial of the form

$$
P_{n}(x)=\frac{1}{2^{n}} \sum_{\nu=0}^{m}(-1)^{\nu}\binom{n}{\nu}\binom{2 n-2 \nu}{n-2 \nu} x^{n-2 \nu}
$$

where $m=[n / 2]$. For odd n this polynomial has the trivial factor x. Dividing in this case by x, we define

$$
L_{n}(x)=\frac{1}{2^{n}} \sum_{\nu=0}^{m}(-1)^{\nu}\binom{n}{\nu}\binom{2 n-2 \nu}{n-2 \nu} x^{2 m-2 \nu} .
$$

For nearly 50 years it has been conjectured that L_{n} is irreducible over the field of rational numbers, but it has been proved only for values of n whose p-adic representations have certain special forms. In the following let p denote an odd prime.

In $1912 \mathrm{~J} . \mathrm{B}$. Holt [2] proved L_{n} irreducible if

$$
\begin{aligned}
2^{a} & \leq n \leq 2^{a}+1 \\
p-2 & \leq n \leq p+1 \\
2 p-2 & \leq n \leq 2 p-1
\end{aligned}
$$

In 1913 he extended his results [3] to include

$$
n=p-4, \quad p+3, \quad 2 p-4
$$

In 1924 H . Ille [4] showed that L_{n} is irreducible for

$$
n=p-3, \quad p+2, \quad 2 p-3
$$

and for $n=(p-1) p^{k}+j$, where $j=0, \pm 1, \pm 2, \pm 3,-4$. In $1951 \mathrm{~J} . \mathrm{H}$. Wahab proved that L_{n} is irreducible for [6] $n=K \cdot 2^{a}+j$, where $j=0,1$, 2,3 and $K<19$, and for $n=p+j$, where $j=4, \pm 5, \pm 6, \pm 7, \pm 8$, and $n=$ $2 p-j$, where $j=5,6,7$, and 8 and where in each of these last two forms p must belong to certain residue classes, modulo 8. In 1956 Melnikov [5] proved irreducibility in the case of $n=(p+1) p^{k}+j$, where $j=0$ or 1 , and in 1960 Wahab [7] in a second paper proved the conjecture for $n=(p-1)\left(p^{a+1}+p^{a}\right)$ if $p<17$, for $n=(p-1)\left(p^{a+2}+p^{a}\right)$ if $p<5$, and for $n=(p-1)\left(p^{a+2}+\right.$ $p^{a+1}+p^{a}$) if $p<5$.

Holt stated that his results proved the conjecture for all values of n less
Received August 4, 1960.

