CONTRACTIBILITY IN SPACES OF HOMEOMORPHISMS

By J. H. Roberts

1. Introduction and results. Suppose X is compact, metric, and of finite dimension n. For each positive integer k let $\mathscr{H}\left(X, I^{k}\right)$ be the space of all homeomorphisms of X into I^{k}, the k-dimensional interval, and $\mathfrak{C}\left(X, I^{k}\right)$ the space of all mappings (continuous functions) of X into I^{k}, with the usual metric topology. $\quad\left(\rho(f, g)=\max d(f(x), g(x))\right.$ for $x \varepsilon X$, where d is the metric in I^{k} and ρ is the metric in $\mathfrak{C}\left(X, I^{k}\right)$.) We also consider $\mathfrak{C}\left(X, I^{\omega}\right)$ and $\mathscr{C}\left(X, I^{\omega}\right)$, where the Hilbert cube replaces I^{k}, and in this case X is not required to be finite dimensional. In [2] it was stated that $\mathscr{H}\left(X, I^{k}\right)$ is arc-wise connected, and locally arc-wise connected, if $k \geq 2 n+2$. In [3] a result was stated which is more general in two directions, as indicated in the following theorem.

Theorem 1. Suppose S^{r} is a topological r-sphere in $\mathfrak{C}\left(X, I^{k}\right)$ and $k \geq 2 n+$ $2+r$. Then S^{r} is contractible in $S^{r} \cup \mathfrak{H}\left(X, I^{k}\right)$. That is to say, there exists a mapping $F: S^{r} \times I \rightarrow \mathfrak{C}\left(X, I^{k}\right)$ such that
(i) $F(f, 0)=f$ for all $f \varepsilon S^{r}$,
(ii) $F(f, t) \varepsilon \mathfrak{H}\left(X, I^{k}\right)$ if $0<t \leq 1$,
(iii) $F(f, 1)=g$ where g is fixed (independent of f).

Other results are as follows.
Theorem 2. Suppose T is an $(r+1)$-dimensional polytope, $\operatorname{dim} X=n$, and $k \geq 2 n+2+r$. Then the space A of all mappings of T into $\mathfrak{C}\left(X, I^{k}\right)$ contains a dense G_{δ} set B of mappings of T into $\mathfrak{F C}\left(X, I^{k}\right)$.

Theorem 3. Suppose X and K are compact metric spaces, $\operatorname{dim} X=n$, $\operatorname{dim} K=r$, and $k \geq 2 n+2+r$. Let α_{0} and α_{1} be mappings of K into $\mathfrak{C}\left(X, I^{k}\right)$. Then there exists a homotopy $f: K \times I \rightarrow \mathfrak{C}\left(X, I^{k}\right)$ such that (1) $f(w, 0)=\alpha_{0}(w)$, $f(w, 1)=\alpha_{1}(w),(w \varepsilon K)$, and (2) for all $t(0<t<1), f(w, t) \varepsilon \mathfrak{H C}\left(X, I^{k}\right)$. In fact, if A is the space of all homotopies of α_{0} to α_{1} in $\mathfrak{C}\left(X, I^{k}\right)$, then A contains a dense G_{δ} subset B such that every f in B satisfies (1) and (2) above.

Theorem 4. Without any restrictions on the dimensions of X and K, if in Theorem $3 I^{k}$ is replaced by I^{ω}, the resulting statement is true.

Theorem 1 is a special case of Theorem 3, as may be seen by taking $K=S^{r}, \alpha_{0}$ the identity mapping and α_{1} a constant mapping of K into $\mathfrak{C}\left(X, I^{k}\right)$. Theorem 2 is considered primarily as a lemma used in the proof of Theorem 3.

Most of this paper is devoted to a proof of Theorem 3. In contrast, Theorem 4 is easy to prove. In fact, if $P=K \times X$, then Theorem 4 follows quickly from

[^0]
[^0]: Received September 15, 1959; in revised form January 4, 1961. Research supported by the National Science Foundation through grants G2788 and G9397.

