CONTRACTIBILITY IN SPACES OF HOMEOMORPHISMS

By J. H. ROBERTS

1. Introduction and results. Suppose X is compact, metric, and of finite dimension n. For each positive integer k let $\mathfrak{F}(X, I^k)$ be the space of all homeomorphisms of X into I^k , the k-dimensional interval, and $\mathfrak{C}(X, I^k)$ the space of all mappings (continuous functions) of X into I^k , with the usual metric topology. $(\rho(f, g) = \max d(f(x), g(x)) \text{ for } x \in X, \text{ where } d \text{ is the metric in } I^k$ and ρ is the metric in $\mathfrak{C}(X, I^k)$.) We also consider $\mathfrak{C}(X, I^\omega)$ and $\mathfrak{K}(X, I^\omega)$, where the Hilbert cube replaces I^k , and in this case X is not required to be finite dimensional. In [2] it was stated that $\mathfrak{K}(X, I^k)$ is arc-wise connected, and locally arc-wise connected, if $k \geq 2n + 2$. In [3] a result was stated which is more general in two directions, as indicated in the following theorem.

THEOREM 1. Suppose S^r is a topological r-sphere in $\mathfrak{C}(X, I^k)$ and $k \geq 2n + 2 + r$. Then S^r is contractible in $S^r \cup \mathfrak{IC}(X, I^k)$. That is to say, there exists a mapping $F: S^r \times I \to \mathfrak{C}(X, I^k)$ such that

- (i) F(f, 0) = f for all $f \in S^r$,
- (ii) $F(f, t) \in \mathfrak{F}(X, I^k)$ if $0 < t \le 1$,
- (iii) F(f, 1) = g where g is fixed (independent of f).

Other results are as follows.

THEOREM 2. Suppose T is an (r + 1)-dimensional polytope, dim X = n, and $k \geq 2n + 2 + r$. Then the space A of all mappings of T into $\mathfrak{C}(X, I^k)$ contains a dense G_b set B of mappings of T into $\mathfrak{X}(X, I^k)$.

THEOREM 3. Suppose X and K are compact metric spaces, dim X = n, dim K = r, and $k \ge 2n + 2 + r$. Let α_0 and α_1 be mappings of K into $\mathfrak{C}(X, I^k)$. Then there exists a homotopy $f: K \times I \to \mathfrak{C}(X, I^k)$ such that (1) $f(w, 0) = \alpha_0(w)$, $f(w, 1) = \alpha_1(w)$, ($w \in K$), and (2) for all t (0 < t < 1), $f(w, t) \in \mathfrak{F}(X, I^k)$. In fact, if A is the space of all homotopies of α_0 to α_1 in $\mathfrak{C}(X, I^k)$, then A contains a dense G_δ subset B such that every f in B satisfies (1) and (2) above.

Theorem 4. Without any restrictions on the dimensions of X and K, if in Theorem 3 I^k is replaced by I^ω , the resulting statement is true.

Theorem 1 is a special case of Theorem 3, as may be seen by taking $K = S^r$, α_0 the identity mapping and α_1 a constant mapping of K into $\mathfrak{C}(X, I^k)$. Theorem 2 is considered primarily as a lemma used in the proof of Theorem 3.

Most of this paper is devoted to a proof of Theorem 3. In contrast, Theorem 4 is easy to prove. In fact, if $P = K \times X$, then Theorem 4 follows quickly from

Received September 15, 1959; in revised form January 4, 1961. Research supported by the National Science Foundation through grants G2788 and G9397.