A SERIES TRANSFORMATION FOR FINDING CONVOLUTION IDENTITIES

By H. W. Gould

1. Introduction. The purpose of this paper is to demonstrate a binomial series transformation which generalizes a method used by the author in a previous paper [1] to obtain the well-known series

$$
\begin{equation*}
\sum_{k=0}^{\infty} A_{k}(a, b) z^{k}=x^{a} \tag{1.1}
\end{equation*}
$$

where

$$
\begin{equation*}
A_{k}(a, b)=\frac{a}{a+b k}\binom{a+b k}{k}, \tag{1.2}
\end{equation*}
$$

and $z=(x-1) / x^{b}$.
Of course a major application of the expansion (1.1) is to give a simple proof of the generalized Vandermonde convolution identity

$$
\begin{equation*}
\sum_{k=0}^{n}(p+q k) A_{k}(a, b) A_{n-k}(c, b)=\frac{p(a+c)+q a n}{a+c} A_{n}(a+c, b) . \tag{1.3}
\end{equation*}
$$

In another paper [2] information may be found concerning a rather similar generalized Abel convolution where coefficients of the form

$$
\begin{equation*}
B_{k}(a, b)=\frac{a}{a+b k} \cdot \frac{(a+b k)^{k}}{k!} \tag{1.4}
\end{equation*}
$$

occur.
In the present paper we give a number of theorems which arise from a study of the binomial series transformation and which appear to be new results.

2. The binomial series transformation.

Theorem 1. Let $f(k)$ be independent of n and $f(0)=1$. Define

$$
\begin{equation*}
F(n)=\sum_{k=0}^{n}(-1)^{k}\binom{n}{k}\binom{a+b k}{n} f(k) \tag{2.1}
\end{equation*}
$$

Then

$$
\begin{equation*}
\sum_{k=0}^{\infty}\binom{a+b k}{k} z^{k} f(k)=x^{a} \sum_{n=0}^{\infty}(-1)^{n}\left(\frac{x-1}{x}\right)^{n} F(n) \tag{2.2}
\end{equation*}
$$

where $z=(x-1) / x^{b}$.
Received February 24, 1960; first revision, March 2, 1960; second revision, May 20, 1960.

