EXTREMA OF FUNCTIONS OF A REAL SYMMETRIC MATRIX IN TERMS OF EIGENVALUES

By K. A. Bush and I. Olkin

1. Introduction. In this paper we shall establish some known inequalities and a number of new results as special cases of rather powerful general theorems concerning bilinear forms of the real symmetric matrix $A=\left(a_{i j}\right)$. These general theorems can be continued in an endless hierarchy. Basically they rest upon an ingenious construction originally due to Paley [5]. Paley proposed the problem (essentially) of constructing an $n \times n$ orthogonal matrix using only the entries $1 / \sqrt{n}$ and $-1 / \sqrt{n}$. We shall refer to such matrices as Paley matrices. It is known that such matrices exist if $n \equiv 0(4)$ for $n \leq 100$ except $n=92$ (as yet not known), [7].

We shall denote the principal theorems by I, II, ... and the particular theorems derived from the general results by numbers such as I. 1 if the result follows from I.
2. Bounds for a bilinear form. Quadratic forms have long been studied, and a number of interesting inequalities have been obtained. A number of references to this classic approach are contained in [3] in the references. By considering bilinear forms, however, we are able to secure an essential unity of treatment which is both simpler and more productive as a source of theorems.

Suppose we wish to bound $x_{1} A x_{2}^{\prime}$ subject to the constraints $x_{1} x_{1}^{\prime}=x_{2} x_{2}^{\prime}=1$, $x_{1} x_{2}^{\prime}=\rho$ with $|\rho| \leq 1$ where x_{1} and x_{2} are $1 \times n$ vectors. It is convenient to display the constraints in matrix form, and we shall refer to such an array as the vector correlation matrix R with an appropriate subscript. Here

$$
R_{2}=\begin{array}{l|ll}
\overline{x_{1}} & \frac{x_{1}}{} & x_{2} \\
x_{2} & 1 & \rho \\
\rho & 1
\end{array}
$$

Let P_{2} denote the Paley matrix of order 2:

$$
P_{2}=\frac{1}{\sqrt{2}}\left[\begin{array}{rr}
1 & 1 \\
1 & -1
\end{array}\right]
$$

Then $S_{2}=P_{2} R_{2} P_{2}$ is the diagonal matrix $(1+\rho, 1-\rho)$. (It is this diagonalization which makes the Paley matrix such an effective tool). Making the transformation,

$$
\left(x_{1}, x_{2}\right)=\left(y_{1}, y_{2}\right) P_{2}
$$

Received December 22, 1959. This work was supported in part by the Office of Ordnance Research, while the second author was on leave of absence at the University of Chicago.

