EXTREMA OF FUNCTIONS OF A REAL SYMMETRIC MATRIX IN TERMS OF EIGENVALUES

By K. A. Bush and I. Olkin

1. Introduction. In this paper we shall establish some known inequalities and a number of new results as special cases of rather powerful general theorems concerning bilinear forms of the real symmetric matrix $A = (a_{ij})$. These general theorems can be continued in an endless hierarchy. Basically they rest upon an ingenious construction originally due to Paley [5]. Paley proposed the problem (essentially) of constructing an $n \times n$ orthogonal matrix using only the entries $1/\sqrt{n}$ and $-1/\sqrt{n}$. We shall refer to such matrices as Paley matrices. It is known that such matrices exist if $n \equiv 0(4)$ for $n \leq 100$ except n = 92 (as yet not known), [7].

We shall denote the principal theorems by I, II, \cdots and the particular theorems derived from the general results by numbers such as I.1 if the result follows from I.

2. Bounds for a bilinear form. Quadratic forms have long been studied, and a number of interesting inequalities have been obtained. A number of references to this classic approach are contained in [3] in the references. By considering bilinear forms, however, we are able to secure an essential unity of treatment which is both simpler and more productive as a source of theorems.

Suppose we wish to bound $x_1Ax'_2$ subject to the constraints $x_1x'_1 = x_2x'_2 = 1$, $x_1x'_2 = \rho$ with $|\rho| \leq 1$ where x_1 and x_2 are $1 \times n$ vectors. It is convenient to display the constraints in matrix form, and we shall refer to such an array as the vector correlation matrix R with an appropriate subscript. Here

$$R_{2} = \frac{\frac{x_{1} \quad x_{2}}{x_{1}} \frac{x_{1} \quad x_{2}}{1 \quad \rho}}{x_{2} \quad \rho \quad 1}.$$

Let P_2 denote the Paley matrix of order 2:

$$P_2 = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}.$$

Then $S_2 = P_2 R_2 P_2$ is the diagonal matrix $(1 + \rho, 1 - \rho)$. (It is this diagonalization which makes the Paley matrix such an effective tool). Making the transformation,

$$(x_1, x_2) = (y_1, y_2)P_2$$
,

Received December 22, 1959. This work was supported in part by the Office of Ordnance Research, while the second author was on leave of absence at the University of Chicago.