COEFFICIENT IDENTITIES DERIVED FROM EXPANSIONS
OF ELEMENTARY SYMMETRIC FUNCTION PRODUCTS
IN TERMS OF POWER SUMS

By Jack LEVINE

1. Introduction. The expansions under consideration are represented by
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where the sum is over all partitions [1"* 2"* --. "] of the weight w = p, +
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The elementary symmetric functions (or unitary functions) a, are defined as
usual from the identity
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and the power sums (or one-part functions), by s, = Y % . The expansion
(1.1) is commonly known as the US expansion in the David-Kendall notation
(11.

The purpose of this paper is to obtain relations between the coeflicients
A of (1.1). The case k = 1 is, of course, well known as the inverse of Waring’s
formula. In this case, MacMabhon [5; 6], (1.1) reduces to
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N =mn, 4+ --- + n,, and we have the simple explicit formula for the individual
coefficients,
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It is known that the coefficients of (1.4) are such that their sum is zero,
(p > 1), and the sum of their absolute values is 1, i.e.,
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Proofs may be found in E. Roe [11], Dwyer [2], Ostrowski [8]. It follows
from (1.5), (1.6) that the general coefficients of (1.1) satisfy similar identities,
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