GENERALIZED KUMMER CONGRUENCES FOR PRODUCTS OF SEQUENCES

By Harlan Stevens

1. Introduction. If p is any fixed rational prime, then in this paper we shall always let R_{p} denote the set of rational numbers that are integral $(\bmod p)$.

Let $\left\{a_{n}\right\}$ be a sequence of numbers in R_{p} that satisfy the congruence

$$
\begin{equation*}
\sum_{s=0}^{r}(-1)^{s}\binom{r}{s} \lambda_{1}^{r-s} a\left(m+s\left(p^{t_{1}}-1\right)\right) \equiv 0 \tag{1.1}
\end{equation*}
$$

$\left(\bmod p^{r}\right)$
for all $m \geq r \geq 1$ and for some positive integer t_{1}. The multiplier λ_{1} is also in R_{p} and $a_{n}=a(n)$. We shall call (1.1) Kummer's congruence for $\left\{a_{n}\right\}$. For example, Nielsen [8, Chapter 14] shows that in case $p>2, t_{1}=1$ and $\lambda_{1}=1$, formula (1.1) holds for $a_{n}=E_{n}$, the Euler numbers in the even suffix notation. If $\left\{b_{n}\right\}$ is a second sequence of numbers in R_{p} that satisfy

$$
\begin{equation*}
\sum_{s=0}^{r}(-1)^{s}\binom{r}{s} \lambda_{2}^{r-s} b\left(m+s\left(p^{t_{2}}-1\right)\right) \equiv 0 \quad\left(\bmod p^{r}\right) \tag{1.2}
\end{equation*}
$$

for all $m \geq r \geq 1$ and for some positive integer t_{2}, then a natural way to form a composition sequence is by means of the Hurwitz product. Put

$$
\begin{equation*}
c_{n}=\sum_{i=0}^{n}\binom{n}{j} a_{i} b_{n-i} \quad(n=0,1,2, \cdots) \tag{1.3}
\end{equation*}
$$

We shall call the sequence $\left\{c_{n}\right\}$ the Hurwitz product of the sequences $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$. In the special case $t_{1}=t_{2}=1$, Carlitz [5] has proved the following result: if $\lambda_{1} \lambda_{2} \not \equiv 0(\bmod p)$ and t is the least positive integer such that

$$
\lambda_{1}^{t} \equiv \lambda_{2}^{t} \equiv k
$$

for some k, then

$$
\begin{equation*}
\sum_{s=0}^{r}(-1)^{s}\binom{r}{s} k^{r-s} c\left(m+s\left(\dot{p}^{t}-1\right)\right) \equiv 0 \tag{1.4}
\end{equation*}
$$

for all $m \geq r \geq 1$, where $\left\{c_{n}\right\}$ is defined by (1.3). More generally he has shown that

$$
\begin{equation*}
\sum_{s=0}^{r}(-1)^{s}\binom{r}{s} k^{p^{z}(r-s)} c\left(m+s p^{z}\left(p^{t}-1\right)\right) \equiv 0 \quad\left(\bmod p^{r z+r}\right) \tag{1.5}
\end{equation*}
$$

for $r \geq 1, z \geq 0, m \geq r z+r$. In case $\lambda_{1} \equiv 0(\bmod p)$ and $\lambda_{2} \not \equiv 0(\bmod p)$, these results do not hold and another congruence [5, Theorem 4] is obtained.

These results raise other interesting questions. We may seek, for example,
Received May 11, 1960. Research supported by National Science Foundation grant G-9425.

