GENERALIZED KUMMER CONGRUENCES FOR PRODUCTS OF SEQUENCES

By HARLAN STEVENS

1. Introduction. If p is any fixed rational prime, then in this paper we shall always let R_p denote the set of rational numbers that are integral (mod p).

Let $\{a_n\}$ be a sequence of numbers in R_p that satisfy the congruence

(1.1)
$$\sum_{s=0}^{r} (-1)^{s} {\binom{r}{s}} \lambda_{1}^{r-s} a(m+s(p^{t_{1}}-1)) \equiv 0 \pmod{p^{r}}$$

for all $m \ge r \ge 1$ and for some positive integer t_1 . The multiplier λ_1 is also in R_p and $a_n = a(n)$. We shall call (1.1) Kummer's congruence for $\{a_n\}$. For example, Nielsen [8, Chapter 14] shows that in case p > 2, $t_1 = 1$ and $\lambda_1 = 1$, formula (1.1) holds for $a_n = E_n$, the Euler numbers in the even suffix notation. If $\{b_n\}$ is a second sequence of numbers in R_p that satisfy

(1.2)
$$\sum_{s=0}^{r} (-1)^{s} {\binom{r}{s}} \lambda_{2}^{r-s} b(m+s(p^{t_{2}}-1)) \equiv 0 \pmod{p^{r}}$$

for all $m \ge r \ge 1$ and for some positive integer t_2 , then a natural way to form a composition sequence is by means of the Hurwitz product. Put

(1.3)
$$c_n = \sum_{j=0}^n {n \choose j} a_j b_{n-j} \qquad (n = 0, 1, 2, \cdots).$$

We shall call the sequence $\{c_n\}$ the Hurwitz product of the sequences $\{a_n\}$ and $\{b_n\}$. In the special case $t_1 = t_2 = 1$, Carlitz [5] has proved the following result: if $\lambda_1 \lambda_2 \neq 0 \pmod{p}$ and t is the least positive integer such that

$$\lambda_1^t \equiv \lambda_2^t \equiv k \pmod{p}$$

for some k, then

(1.4)
$$\sum_{s=0}^{r} (-1)^{s} {\binom{r}{s}} k^{r-s} c(m+s(p^{t}-1)) \equiv 0 \pmod{p^{r}}$$

for all $m \ge r \ge 1$, where $\{c_n\}$ is defined by (1.3). More generally he has shown that

(1.5)
$$\sum_{s=0}^{r} (-1)^{s} {\binom{r}{s}} k^{p^{s}(r-s)} c(m+sp^{s}(p^{t}-1)) \equiv 0 \pmod{p^{rs+r}}$$

for $r \ge 1$, $z \ge 0$, $m \ge rz + r$. In case $\lambda_1 \equiv 0 \pmod{p}$ and $\lambda_2 \not\equiv 0 \pmod{p}$, these results do not hold and another congruence [5, Theorem 4] is obtained.

These results raise other interesting questions. We may seek, for example,

Received May 11, 1960. Research supported by National Science Foundation grant G-9425.