STRUCTURE OF MEASURABLE TRANSFORMATIONS

By FRED B. WRIGHT

A property of measurable transformations may be called *localizable* if, for any transformation T, there is an invariant set A so that T regarded as a transformation on A has the property, and so that T regarded as a transformation on the complement of A does not have the property. An example of a localizable property for invertible transformations is incompressibility [4; 46] and [3; 12]. In the latter reference, the question of the localizability of incompressibility is raised for transformations which have no inverse. In this note we show that each of the following is a localizable property: measure preserving; existence of equivalent invariant measures; incompressibility; absolute continuity.

Throughout, let (X, S, m) denote a totally finite measure space. Unless otherwise qualified, T will denote an arbitrary measurable transformation of the space. All sets chosen in a priori manner are measurable.

A set E is said to be *invariant* under T if $T^{-1}E = E$. Let α denote the family of all invariant sets; α is clearly a Boolean σ -algebra of sets. We may therefore consider the totally finite measure space (X, α, m) . Let \mathfrak{X} be any σ -ideal of \mathfrak{A} which contains all invariant null sets. Choose in K a maximal disjoint family $\{K_i\}$ of sets of positive measure. Since $m(X) < \infty$, then $\sum_i m(K_i) < \infty$, and hence the collection must be countable. Let $K = \bigcup_i K_i$; since \mathfrak{X} is a σ-ideal, $K \in \mathcal{K}$. A set $A \in \mathcal{C}$ belongs to \mathcal{K} if and only if m(A - K) = 0. For if this condition is satisfied, then $A - K \in \mathcal{K}$, since \mathcal{K} contains all invariant null sets, and $A \cap K \in \mathcal{K}$ since \mathcal{K} is an ideal; thus $A \in \mathcal{K}$. Conversely, if $A \in \mathcal{K}$, then $m(A - K_i) = 0$, because of the maximality of the family $\{K_i\}$. m(A - K) = 0. For convenience, we will call a σ -ideal in α which contains all invariant null sets a full σ -ideal. A set K which determines a full σ -ideal in α in the above manner will be called a localizing set for the ideal. If K_1 , K_2 are two localizing sets for the same full σ -ideal, then $m(K_1 + K_2) = 0$, where +denotes symmetric difference. Any invariant set is a localizing for a full σ -ideal in a. (See [6, Theorem 5.1] for the most general setting of this comment.)

A transformation is called *incompressible* (or *conservative*) if and only if $m(T^{-1}E - E) = 0$ whenever $E \subset T^{-1}E$. An invariant set A will be called a domain of incompressibility for T if T is incompressible as a transformation on A.

Theorem 1. The domains of incompressibility of T form a full σ -ideal of α .

Proof. Let \mathcal{K} denote the set of all domains of incompressibility of T. Let A be an invariant null set, and suppose $E \subset A$ and $E \subset T^{-1}E$. Since A is invariant, this implies that $T^{-1}E \subset A$; hence $m(T^{-1}E) = 0$ and $m(T^{-1}E - E) = 0$. Therefore \mathcal{K} contains all invariant null sets. Next, let $K \in \mathcal{K}$, $A \in \mathcal{C}$, $A \subset K$. If $E \subset A$, $E \subset T^{-1}E$, then $E \subset T^{-1}E \subset A \subset K$, because of the invariance of

Received May 2, 1960. The author is a Research Fellow of the Alfred P. Sloan Foundation.