ACCUMULABILITY AND INFINITE MATRICES

By Edward C. Posner

We define a concept generalizing the concept of summbability. Let $A = (a_{in})$, $i = 1, 2, \dots; n = 1, 2, \dots$, be a matrix of complex numbers. The sequence $\{y_n\}$ will be called A-accumulable if infinitely many terms of the sequence of auxiliary means $t_i = \sum_{n=1}^{\infty} a_{in}y_n$ are defined, and the defined sequence has exactly one limit point in the finite part of the plane. The first theorem generalizes [8] and is related to results in [1].

THEOREM 1. Let $A = (a_{in})$ be an infinite matrix of complex numbers such that A accumulates every convergent sequence. Let A have bounded columns. Then the rows, possibly infinite in number, for which $\sum_{n=1}^{\infty} |a_{in}|$ diverges can be stricken from A to leave an infinite matrix which actually sums every convergent sequence. Even if the columns of A are not bounded, there exists an infinite number of rows such that the matrix consisting of only those rows sums every convergent sequence.

Proof. We first prove that an infinite number of $\sum_{n=1}^{\infty} |a_{in}|$ converge, and then that these sums are bounded. If all but a finite number of $\sum_{n=1}^{\infty} |a_{in}|$ diverge, we can construct a sequence $\{b_n\}$ convergent to zero and such that all but a finite number of $\sum_{n=1}^{\infty} a_{in}b_n$ diverge. The construction is straightforward and omitted. Let i_i , $j = 1, 2, \cdots$, be the set of indices of those rows of A for which $\sum_{n=1}^{\infty} |a_{in}|$ converges.

which $\sum_{n=1}^{\infty} |a_{in}|$ converges. Let $K_i = \sum_{n=1}^{\infty} |a_{i_j,n}|$; we may suppose K_i goes to infinity with j. We will construct a convergent sequence $\{c_n\}$ whose sequence of i_i -th auxiliary means has more than one limit point in the finite plane. We may assume that the i_i -th row is finite by replacing all terms in the i_i -th row by zero as soon as the sum of the first N_i absolute values of the entries differs from K_i by, say, 1/j or less. For this change alters the set of limit points of the sequence of i_i -th auxiliary means of no convergent sequence. We first assume $\{a_{i_j,n}\}$ as a sequence in j for fixed n is bounded. We will choose a sequence $\{c_n\}$ convergent to zero and such that an infinite number of auxiliary means are +1, and an infinite number are -1. Let $L_1 = K_{i_k} \geq 1$ and choose $c_n =$

 $|a_{i_{i_1},n}| (a_{i_{i_1},n}L_1)^{-1}, \quad 1 \le n \le N_{i_1}, \text{ with } |z| z^{-1} = 1 \text{ if } z = 0.$ Choose $j_2 > j_1$ such that $L_2 \ge 2$ where

$$L_{2} = \left(\sum_{n=N_{j_{1}+1}}^{N_{j_{2}}} | a_{i_{j_{2}},n} |\right) \left(1 + \sum_{n=1}^{N_{j_{1}}} a_{i_{j_{2}},n} c_{n}\right)^{-1}.$$

 L_2 may be infinite. Define

 $c_n = - |a_{i_{j_2},n}| (a_{i_{j_2},n}L_2)^{-1}, \quad N_{j_1} + 1 \le n \le N_{j_2}.$

Received February 12, 1960. This paper was prepared in part with the support of a National Science Foundation grant to Yale University.