BOUNDS FOR THE MAXIMAL CHARACTERISTIC ROOT OF A NON-NEGATIVE IRREDUCIBLE MATRIX

By Alexander Ostrowski and Hans Schneider

1. Let A be an $n \times n$ non-negative irreducible matrix with row sums (all summations go from 1 to n.)

$$
\begin{equation*}
r_{\nu}=\sum_{\mu} a_{\nu \mu}, \quad R=\max , r_{\nu}, \quad r=\min _{\nu} r_{\nu} \tag{1}
\end{equation*}
$$

We shall suppose throughout that

$$
\begin{equation*}
r<k \tag{2}
\end{equation*}
$$

It is well known that because of (2) the maximal characteristic root of A satisfies the inequality

$$
\begin{equation*}
r<\omega<R \tag{3}
\end{equation*}
$$

In §2 we shall use simple arguments to determine bounds L and U for ω satisfying

$$
\begin{equation*}
r<L \leq \omega \leq U<R \tag{4}
\end{equation*}
$$

which may be computed easily in terms of the elements of A; more precisely, L and U will depend only on r and R in (1) and

$$
\begin{gather*}
\rho=\frac{1}{n} \sum_{\nu} r_{\nu} \tag{5}\\
\lambda=\min _{\nu} a_{\nu \nu} \tag{6}\\
\kappa=\min _{\nu \nsim \mu} a_{\nu \mu}\left(a_{v \mu}>0\right), \tag{7}
\end{gather*}
$$

i.e. κ is the minimum of the non-vanishing $a_{\nu \mu}$ with $\nu \neq \mu$.

In §3 a more refined and longer argument will lead to better bounds which still depend only on the r_{ν} in (1) and κ and λ, but require more computation.

When A is positive, bounds satisfying the inequality (4) have already been found by Ledermann [2] and improved by Ostrowski [3] and Brauer [1], but these bounds may coincide with r and R if A has zero elements. Of course, there are bounds which for many matrices A are better than r or R, but these may again reduce to r and R in some cases. For example, one of us has proved, [4], that $\omega \leq \max _{\nu} r_{\nu}^{p} z_{\nu}^{1-n}$ where $z_{\nu}=\sum_{\mu} a_{\mu \nu}$ and $0 \leq p \leq 1$, but this bound equals R if A is symmetric.

Received April 6, 1960. This work was sponsored by the U.S. Army under Contract No. DA-11-022-ORD-2059.

