MULTIPLICATION FORMULAS FOR GENERALIZED BERNOULLI AND EULER POLYNOMIALS

By L. Carlitz

1. Put

$$
\frac{t e^{x t}}{e^{t}-1}=\sum_{0}^{\infty} B_{n}(x) \frac{t^{n}}{n!}, \quad \frac{2 e^{x t}}{e^{t}+1}=\sum_{0}^{\infty} E_{n}(x) \frac{t^{n}}{n!} .
$$

It is familiar that

$$
\begin{gather*}
\sum_{r=0}^{k} B_{m}\left(x+\frac{r}{k}\right)=k^{1-m} B_{m}(k x) \tag{1.1}\\
\sum_{r=0}^{k}(-1)^{r} E_{m}\left(x+\frac{r}{k}\right)=k^{-m} E_{m}(k x) \quad\left(\begin{array}{ll}
k & \text { odd })
\end{array}\right. \tag{1.2}\\
\sum_{r=0}^{k}(-1)^{r} B_{m}\left(x+\frac{r}{k}\right)=-\frac{1}{2} m k^{1-m} E_{m-1}(k x) \quad\binom{k}{\text { even }} \tag{1.3}
\end{gather*}
$$

Also, as Nielsen [5; 54] has pointed out, if a normalized polynomial satisfies (1.1) for a single value of $k>1$, then it is identical with $B_{m}(x)$; similarily if a normalized polynomial satisfies (1.2) for a single odd value of $k>1$, then it is identical with $E_{m}(x)$.

If we define the functions $\bar{B}_{m}(x), \bar{E}_{m}(x)$ by means of

$$
\begin{gathered}
\bar{B}_{m}(x)=B_{m}(x) \quad(0 \leq x<1), \quad \bar{B}_{m}(x+1)=\bar{B}_{m}(x) \\
\bar{E}_{m}(x)=E_{m}(x) \quad(0 \leq x<1), \quad \bar{E}_{m}(x+1)=-\bar{E}_{m}(x) \quad(m \geq 1)
\end{gathered}
$$

then it is easily seen that (1.1), (1.2), (1.3) hold for $\bar{B}_{m}(x), \bar{E}_{m}(x)$ also.
In a recent paper [1], the writer has obtained, using a method employed by Mordell [4] in extending some work of Mikolás [3], the following results.

Let a_{1}, \cdots, a_{n} be positive integers that are relatively prime in pairs and let $A=a_{1} a_{2} \cdots a_{n}$. Then if k is an arbitrary integer ≥ 1, we have

$$
\begin{align*}
& \sum_{r=0}^{k A-1} \bar{B}_{m_{1}}\left(x_{1}+\frac{r}{k a_{1}}\right) \cdots \bar{B}_{m_{n}}\left(x_{n}+\frac{r}{k a_{n}}\right) \tag{1.4}\\
&=C \sum_{r=0}^{k-1} \bar{B}_{m_{1}}\left(a_{1} x_{1}+\frac{r}{k}\right) \cdots \bar{B}_{m_{n}}\left(a_{1} x_{1}+\frac{r}{k}\right),
\end{align*}
$$

where

$$
\begin{equation*}
C=a_{1}^{1-m_{1}} a_{2}^{1-m_{2}} \cdots a_{n}^{1-m_{n}} . \tag{1.5}
\end{equation*}
$$

Recieved November 17, 1959.

