SEPARABILITY IN METRIC SPACES

By L. B. Treybig

In his dissertation (The University of Texas, 1958) the author proved the following theorem: If Σ is a connected metric space which is (1) locally peripherally separable [1], and (2) compactly connected [3], then Σ is completely separable. While considering the effect of replacing conditions (1) and (2) of the hypothesis by a single condition, Moore's axiom 5 in "Foundations," the author discovered the following theorem: If Σ is a connected metric space such that (1) no point separates space, and (2) if P and Q are two points and R is a region containing P, then there exists in R a compact continuum M which separates P from Q, then Σ is completely separable.

Definition. For each positive integer n, let G_{n} denote the collection of all open sets having diameter less than $1 / n$.

Lemma 1. If P is a point of the region R and M is a closed and compact point set not containing P, then there exists a compact continuum N lying in R such that N separates P from M.

Proof. Let Q denote a point of M. In G_{1} there is a subset R_{1} of R which (i) contains P and (ii) contains a compact continuum N_{1} which separates P from $Q . S-N_{1}=N(P, 1)+N(Q, 1)$, where $N(P, 1)$ and $N(Q, 1)$ are disjoint open sets containing P and Q, respectively. In G_{2} there is a subset R_{2} of $N(P, 1) \cdot R_{1}$ which (i) contains P and (ii) contains a compact continuum N_{2} which separates P from $N(Q, 1)+N_{1} . S-N_{2}=N(P, 2)+N(Q, 2)$, where $N(P, 2)$ and $N(Q, 2)$ are disjoint open sets containing P and Q, respectively. In G_{3} there is a subset R_{3} of $N(P, 2) \cdot R_{2}$ which (i) contains P and (ii) contains a compact continuum N_{3} which separates P from $N(Q, 2)+N_{2}$. Consider a continuation of this process.

Let $N_{P}=N(P, 1) \cdot N(P, 2) \cdot \cdots$ and $N_{Q}=\Sigma N(Q, i)$. Suppose N_{P} is nondegenerate. Since space is connected, and no point of N_{Q} is a limit point of N_{P}, some point T of $N_{P}-P$ is a limit point of N_{Q}, or else P would separate space. Since $P+\Sigma N_{i}$ is closed, there exists a region R containing T, but no point of this set. There exists in R a compact continuum L separating T from P. $S-L=L_{P}+L_{T}$, where L_{P} and L_{T} are disjoint open sets containing P and T, respectively. Since P is a limit point of ΣN_{i}, there is a positive integer d such that N_{d} is a subset of L_{P}. There exists a positive integer $j>d$ such that L_{T} contains a point of $N(Q, j)$, since L_{T} is open. But $L+L_{T}$ is a connected subset of $S-N_{i}$ which intersects $N(Q, j)$. Therefore, $L+L_{T}$ is a subset of

[^0]
[^0]: Received December 14, 1959. Presented to The American Mathematical Society, September 3, 1959. This work was supported in part by Tulane University's National Science Foundation contract.

