SEPARABILITY IN METRIC SPACES

By L. B. TREYBIG

In his dissertation (The University of Texas, 1958) the author proved the following theorem: If Σ is a connected metric space which is (1) locally peripherally separable [1], and (2) compactly connected [3], then Σ is completely separable. While considering the effect of replacing conditions (1) and (2) of the hypothesis by a single condition, Moore's axiom 5 in "Foundations," the author discovered the following theorem: If Σ is a connected metric space such that (1) no point separates space, and (2) if P and Q are two points and R is a region containing P, then there exists in R a compact continuum M which separates P from Q, then Σ is completely separable.

DEFINITION. For each positive integer n, let G_n denote the collection of all open sets having diameter less than 1/n.

Lemma 1. If P is a point of the region R and M is a closed and compact point set not containing P, then there exists a compact continuum N lying in R such that N separates P from M.

Proof. Let Q denote a point of M. In G_1 there is a subset R_1 of R which (i) contains P and (ii) contains a compact continuum N_1 which separates P from Q. $S - N_1 = N(P, 1) + N(Q, 1)$, where N(P, 1) and N(Q, 1) are disjoint open sets containing P and Q, respectively. In G_2 there is a subset G_2 of $N(P, 1) \cdot R_1$ which (i) contains P and (ii) contains a compact continuum N_2 which separates P from $N(Q, 1) + N_1$. $S - N_2 = N(P, 2) + N(Q, 2)$, where N(P, 2) and N(Q, 2) are disjoint open sets containing P and Q, respectively. In G_3 there is a subset G_3 of $O(P, 2) \cdot R_2$ which (i) contains $O(P, 2) \cdot R_3$ and (ii) contains a compact continuum $O(P, 3) \cdot R_3$ which separates $O(P, 3) \cdot R_3$ from $O(P, 3) \cdot R_3$. Consider a continuation of this process.

Let $N_P = N(P, 1) \cdot N(P, 2) \cdot \cdots$ and $N_Q = \Sigma N(Q, i)$. Suppose N_P is non-degenerate. Since space is connected, and no point of N_Q is a limit point of N_P , some point T of $N_P - P$ is a limit point of N_Q , or else P would separate space. Since $P + \Sigma N_i$ is closed, there exists a region R containing T, but no point of this set. There exists in R a compact continuum L separating T from P. $S - L = L_P + L_T$, where L_P and L_T are disjoint open sets containing P and T, respectively. Since P is a limit point of ΣN_i , there is a positive integer d such that N_d is a subset of L_P . There exists a positive integer j > d such that L_T contains a point of N(Q, j), since L_T is open. But $L + L_T$ is a connected subset of $S - N_i$ which intersects N(Q, j). Therefore, $L + L_T$ is a subset of

Received December 14, 1959. Presented to The American Mathematical Society, September 3, 1959. This work was supported in part by Tulane University's National Science Foundation contract.