ECKFORD COHEN'S GENERALIZATIONS OF RAMANUJAN'S TRIGONOMETRICAL SUM $C(n,r)$

BY M. SUGUNAMMA

1. Introduction. In [5] Srinivasa Ramanuian studied the trigonometrical sum $C(n,r)$, defined by

$$
C(n,r) = \sum_{x} \exp(2\pi i n x/r)
$$

where x runs through a reduced residue system (mod r). Eckford Cohen general-
ized this sum in [1] as
(1.2) $C^{(*)}(n, r) = \sum \exp(2\pi inx/r^*)$ ized this sum in [1] as

(1.2)
$$
C^{(*)}(n,r) = \sum_{x} \exp(2\pi i n x/r^*)
$$

where x runs through an s-th reduced residue system (mod r^*); that is, all the integers in a complete residue system (mod r^*) whose greatest common divisor with r^* has no s-th power factor greater than 1. He gave in [4] a second generalization $C_{(k)}(n, r)$, by defining a reduced residue system (mod k, r) as the system containing all the ordered sets of k integers (x_1, x_2, \cdots, x_k) from a complete residue system (mod r), with the property that the greatest common divisor of x_1, x_2, \dots, x_k and r is 1. Then $C_k(n, r)$ is defined by

(1.3)
$$
C_{(k)}(n,r) = \sum_{(x_1,x_2,\cdots,x_k)} \exp(2\pi i n (x_1 + x_2 + \cdots + x_k)/r)
$$

where the set (x_1, x_2, \cdots, x_k) runs through a reduced residue system (mod k, r).

It can be shown that $C_{(k)}(n, r) = C^{(k)}(n^k, r)$ using two of Cohen's results viz.

(1)
$$
C^{(k)}(n, r) = \frac{\phi_{(k)}(r)\mu(r/g_1)}{\phi_{(k)}(r/g_1)}
$$
, [2; Theorem 2];
\n(2) $C_{(k)}(n, r) = \frac{\phi_{(k)}(r)\mu(r/g_2)}{\phi_{(k)}(r/g_2)}$

[4; Theorem 1] where g_1^* is the greatest k-th power common divisor of r^k and n, g_2 is the greatest common divisor of r and n, and $\phi_{(k)}(r)$ is Jordan's extension of Euler's ϕ -function; i.e., the number of sets of k integers (x_1, x_2, \cdots, x_k) form a complete residue system (mod r) whose greatest common divisor with n is 1, and μ is Möbius μ -function.

The object of this paper is to give a further generalization $C_{(k)}^{(s)}(n, r)$ of $C(n, r)$ by combining these two generalizations and to show that $C_{(k)}^{(s)}(n, r)$ and Jordan's function $\phi_{(ks)}(r)$ are connected in a simple relation, viz. Theorem 2. We define $C_{(k)}^{(s)}(n, r)$ as

Received September 24, 1959.