CERTAIN UPPER SEMI-CONTINUOUS DECOMPOSITIONS OF A SEMIGROUP

By R. P. HUNTER

We are concerned here with the problem of finding, in certain compact connected (Hausdorff) semigroups, subcontinua with prescribed properties. In particular, we seek subcontinua which are arcs and sub-semigroups.

Koch, [6], has shown that if S is a compact connected semigroup with identity, then S must contain an arc. It is shown in [5] that if $S^2 = S$, and S has a zero, then S is arcwise connected if it is either a one-dimensional continuum or is an irreducible continuum. In general, however, there need not be an arc at the identity, [5] or [6].

Our notation, in general, follows [4]. In particular, a non-empty subset L is said to be a left ideal if $SL \subseteq L$. The set of all elements x such that x + Sx = p + Sp is denoted by L_p . The minimal (two-sided) ideal of S is denoted by K. If S is compact, K exists and is a retract of S. The set of idempotent elements is denoted by E. ($x \in E$ if $x^2 = x$.)

It is well known that the sets L_x form an upper semi-continuous decomposition of S when S is compact. We denote the associated hyperspace by S' and the canonical mapping by φ . I.e., $\varphi : S \to S'$, $\varphi(x) = \{L_x\}$.

If we assume that S is normal, that is to say, xS = Sx for each point x, then S' is a (continuous) semigroup, under the natural multiplication and φ is a (continuous) homomorphism.

Since our methods in this note will involve S', we assume throughout that S is normal and compact.

The symbols 0 and 1 will denote the zero and identity elements respectively.

Following [12] we shall mean by an *I*-semigroup from a to b, an arc from a to b which is a sub-semigroup with a as zero and b as identity.

We use the term arc in the sense of [10].

If J is a two-sided ideal, we recall that the Rees quotient S mod J is the upper semi-continuous decomposition which identifies the points of J. With the natural multiplication, S mod J is a continuous semigroup with zero. The canonical mapping is, of course, one to one from S - J. One often makes the natural identification between S - J and $S \mod J - J \mod J$.

 I_1 will denote the usual unit interval.

 I_2 will denote the interval $[\frac{1}{2}, 1]$ with the multiplication $x \cdot y = \max(\frac{1}{2}, xy)$ where xy is the usual product. This example is due to Gleason.

 I_3 will denote the unit interval with the multiplication $x \cdot y = \min(x, y)$.

LEMMA 1. Suppose that P is a subset of S'. If P is an I-semigroup each

Received July 6, 1959; in revised form, January 21, 1960. The author holds a Sarah H. Moss Postdoctoral fellowship.