DIFFERENCE METHODS FOR MIXED BOUNDARY-VALUE PROBLEMS

By W. GILBERT STRANG

1. Introduction. We shall consider difference approximations to problems governed by linear parabolic or hyperbolic partial differential equations, when data on the solution is prescribed throughout a finite domain of *m*-space at time t = 0 and on its boundary thereafter. More than a formal correspondence of difference and differential operators is required for *convergence* to the solution when an increasingly fine mesh is used for the difference approximation. This fundamental observation was made in 1928 by Courant, Friedrichs, and Lewy [2]. The additional requirement is *stability*—that the errors introduced at each time-step in the difference scheme have a limited rate of growth.

Lax and Richtmyer established in their important paper [6] the equivalence of convergence and stability for initial-value problems. In mixed problems the situation is similar; however, it may well happen that stability is verifiable in one norm (e.g. l_2) and not in another (e.g. the maximum norm). Our approach to this difficulty is an alternative to one along the lines of Sobolev's lemma, as in Weinberger [8]. It turns out that in the latter norm convergence still holds whenever the data is in a certain sense *smooth* enough; calling this property of a method *s-convergence*, we examine its equivalent, *s-stability*.

The structure of our theory is modeled closely on that of Lax and Richtmyer. We describe permissible difference schemes, define s-convergence and s-stability, prove their equivalence in §8, and then investigate means of verifying s-stability. Finally, an example is given to illustrate the methods of the paper, as well as its applicability to variable-coefficient problems on non-rectangular domains.

2. Domain and norms. Let the bounded domain D^- , with simply-connected interior D and boundary D', be a union of closed unit cubes in real *m*-space whose vertices have integral coordinates. Over D^- we lay a succession of meshes of width 1/q, $q = 2, 3, \cdots$, and for each q we denote the set of meshpoints in D, D^- , and D' by D_q , D^-_q and D'_q , respectively. Let the points of D_q receive a fixed numbering, from 1 to r_q . We further select positive constants C and ρ , and define

(1)
$$\Delta t_q = C q^{-\rho}.$$

The *p*-norm of a vector $v = (v_1, \dots, v_r)$ is defined as

(2)
$$|v|_{p} = \left(\frac{1}{r}\Sigma |v_{i}|^{p}\right)^{1/p} \qquad 1 \leq p < \infty$$

 $p = \infty$

$$|v|_{\infty} = \max_{1 \le i \le r} |v_i|$$

Received March 13, 1959.