THE CHARACTERISTIC DIVISORS OF A POLYNOMIAL FUNCTION OF A MATRIX

By Eckford Cohen

1. Introduction. Let $(F)_n$ denote the ring of $n \times n$ matrices over a field F and suppose A to be a matrix of $(F)_n$ with characteristic polynomial Q(x). Further, let f(x) be an arbitrary polynomial in the ring F_x of polynomials over F. The problem of determining the characteristic divisors of the matrix B = f(A) was first solved in the case of the complex field by Kreis [1] in 1906. Later, in 1935, a solution of this problem in the case of arbitrary fields was given by McCoy [3]. Subsequent proofs of McCoy's results for fields F of characteristic 0 have been given by MacDuffee [2], Williamson [6], and Wagner [5]. For the earlier history of this problem the reader is referred to the papers of McCoy and MacDuffee.

In this paper ($\S 3$) we give a fresh solution of the above problem, based on the theory of representation spaces and valid for arbitrary fields F. A statement of the main theorem, as well as certain preliminary lemmas, will be found in $\S 2$. In the remainder of this section we sketch briefly the theoretical background of the method employed.

The (F_x, F) -representation space corresponding to the homomorphism, $x \to A$, mapping F_x onto a subring of $(F)_n$, will be denoted by X [4, §110]. The space X, when viewed as an F_x -module, may be decomposed into a direct sum of cyclic F_x -submodules whose annihilator ideals are generated by powers of (monic) irreducibles in F_x [4, §\$109, 111]. The submodules are vector spaces relative to F and hence are cyclic (F_x, F) -subspaces of X. The annihilator polynomials are the characteristic divisors of A and their product is the characteristic polynomial Q(x) of A. The polynomial $\rho(x)$ which generates the minimum ideal, that is, the kernel of the homomorphism $x \to A$, is the minimum polynomial of A.

Now place z=f(x) and denote by Z the (F_z,F) -representation space corresponding to the homomorphism, $z\to B$. Since this homomorphism may be extended to the homomorphism $x\to A$, one may suppose X and Z to consist of identical elements. We may also assume that the matrices A and B refer to a common F-basis (u) of X and Z. The problem of determining the characteristic divisors of B is therefore reduced to the problem of effecting a cyclic, prime-power decomposition of Z. There is no loss of generality in supposing that X is cyclic and indecomposable, that is, A is non-derogatory $(Q(x) = \rho(x))$ and Q(x) is the power of an irreducible of F_x .

2. Preliminaries. We introduce the following notation. Place $Q(x) = P^{d}(x)$ where P(x) is irreducible of degree h in F_{x} , dh = n. Let λ denote a root of P(x) Received April 20, 1959.