SOME SPECIAL FUNCTIONS OVER $G F(q, x)$

By L. Carlitz

1. Introduction. The function

$$
\begin{equation*}
\psi(t)=\sum_{r=0}^{\infty}(-1)^{r} \frac{t^{t^{r}}}{F_{r}}, \tag{1.1}
\end{equation*}
$$

where

$$
F_{r}=\prod_{s=0}^{r-1}\left(x^{a^{r}}-x^{a^{r}}\right), \quad F_{0}=1
$$

is of interest in connection with the arithmetic of polynomials in $G F(q, x)$; see for example [1], [2], [4], [5], [6]. Moreover, it furnishes an interesting explicit example of an entire function in a field with a non-Archimedian valuation [5]. In particular, it possesses the factorization

$$
\begin{equation*}
\psi(t)=t \prod_{E}\left(1-\frac{t}{E \xi}\right), \tag{1.2}
\end{equation*}
$$

the product extending over all the non-zero elements of $G F[q, x]$. For the definition of ξ and additional properties of $\psi(t)$ see $\S 3$ below.

The object of the present paper is to define some additional functions suggested by various classical functions. We begin with an analog of the Bessel function, namely

$$
J_{n}(t)=\sum_{r=0}^{\infty}(-1)^{r} \frac{t^{a^{n+r}}}{F_{n+r} F_{r}^{a^{n}}} .
$$

From $J_{n}(t)$ we are led rather naturally to the consideration of certain other functions and classes of polynomials. For example, as a generating function for $J_{n}(t)$ we may mention

$$
\sum_{-\infty}^{\infty} u^{\alpha^{n}} J_{n}(t)=\psi(t G(u)),
$$

where

$$
J_{-n}(t)=(-1)^{n}\left\{J_{n}(t)\right\}^{q^{-n}}
$$

and

$$
G(t)=\sum_{r=0}^{\infty} \frac{u^{\alpha^{-r}}}{F_{r}^{\alpha^{-r}}} .
$$

The definition of $G(t)$ as contrasted with that of $\psi(t)$ is rather striking; as we shall see below, it can also be thought of as an "entire" function.

Received June 2, 1959.

