SOME SPECIAL FUNCTIONS OVER GF(q, z)

By L. CArLITZ

1. Introduction. The function
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is of interest in connection with the arithmetic of polynomials in GF(q, x); see
for example [1], [2], [4], [5], [6]. Moreover, it furnishes an interesting explicit
example of an entire function in a field with a non-Archimedian valuation [5].
In particular, it possesses the factorization
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the product extending over all the non-zero elements of GF[g, x]. For the
definition of ¢ and additional properties of ¥(f) see §3 below.

The object of the present paper is to define some additional functions suggested
by various classical functions. We begin with an analog of the Bessel function,
namely
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From J,(f) we are led rather naturally to the consideration of certain other
functions and classes of polynomials. For example, as a generating function
for J,(t) we may mention

St = w6,

where
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The definition of G(f) as contrasted with that of y(¢) is rather striking; as we
shall see below, it can also be thought of as an “‘entire’”’ function.
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