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1. Introduction. Let G be a reduced primary Abelian group. Suppose that
G is countable; then Ulm’s theorem [5] asserts that G is determined up to iso-
morphism by its Ulm invariants. If, instead of assuming that G is countable,
we assume that G is a direct sum of (any number of cyclic groups, i.e., a direct
sum of finite groups, then G is again determined by its Ulm invariants. The
main purpose of this paper is to unite these two cases by proving the following
generalization of Ulm’s theorem: If G is a direct sum o] countable groups, then
G is determined by its Ulm invariants.

In 3 we consider a companion question, that of the existence of a group with
prescribed Ulm invariants. Necessary and sufficient conditions are given for
the existence of a reduced primary Abelian group which is a direct sum of
countable groups and has the prescribed invariants as its Ulm invariants.
The problem of determining when a given primary Abelian group is a direct

sum of countable groups is of interest in view of the isomorphism theorem
mentioned. In 5 we prove a theorem along these lines for one special case.
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Kaplansky for his many suggestions and for his inspiring guidance.

2. Basic notions. We recall that an Abelian group G is primary if for a fixed
prime p, the order of each element in G is a power of p. To study primary
Abelian groups, it usually suffices to study those which have no (non-zero)
divisible subgroups, i.e., no subgroups S 0 with pS S. In this case we
call G reduced.
For every primary Abelian group G we have a descending chain of subgroups

G. one for each ordinal number a, defined as follows:

G, pG if a 1
G. <. G if a is a limit ordinal.

Let k be the first ordinal for which Gx Gx+ Then Gx is divisible. If G is
reduced, G must be 0 and k is called the length of G.
An element x in G has infinite height if x is in G .< G.. (We shall not

need the more refined notion of height given in [1; 28].) If x is not in G the
height of x is n if x is in G. p’G but not in G,+ p’+G. In this case we
write h(x) n. A subgroup H of G is pure if pG H p’H for all n. If H
is pure, an element of H has the same height in H that it has in G.
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