PAIRS OF COMMUTING MATRICES OVER A FINITE FIELD

By Walter Feit and N. J. Fine

In this paper, we determine the number of ordered pairs of commuting n by n matrices over $G F(q)$ and give a simple generating function for this number.
To state the main result we need some notation. For any partition π of n, let $b_{i} \geq 0$ denote the frequency of the part $i \geq 1$, so that $n=b_{1}+2 b_{2}+\cdots$, and in the usual notation, $\pi=\left(1^{b_{1}} 2^{b_{2}} \cdots\right)$. Let $k(\pi)$ be the total number of parts in π, that is,

$$
k(\pi)=\sum_{i \geq 1} b_{i} .
$$

Let

$$
\begin{aligned}
f(n, q)=f(n) & =\left(1-\frac{1}{q}\right)\left(1-\frac{1}{q^{2}}\right) \cdots\left(1-\frac{1}{q^{n}}\right) \quad(n \geq 1) \\
f(0) & =1
\end{aligned}
$$

Then we have the following theorem:
Theorem. If $P(n, q)=P(n)$ is the number of ordered pairs of (not necessarily distinct) commuting n by n matrices with coefficients in $G F(q)$, then

$$
\begin{equation*}
P(n)=q^{n^{2}} f(n) \sum_{\pi(n)} \frac{q^{k(\pi)}}{f\left(b_{1}\right) f\left(b_{2}\right) \cdots f\left(b_{n}\right)} . \tag{1}
\end{equation*}
$$

Also,

$$
\begin{equation*}
\sum_{n \geq 0} \frac{P(n)}{q^{n} f(n)} x^{n}=\prod_{\substack{i \geq 1 \\ i \geq 0}} \frac{1}{\left(1-q^{1-i} x^{i}\right)} \tag{2}
\end{equation*}
$$

Proof. If A is a linear transformation acting on an n-dimensional vector space V (over any field), then (see, for instance [5; 9]) $V=K_{A} \oplus I_{A}$, where

$$
\begin{aligned}
K_{A} & =\left\{v \in V \mid A^{n} v=0\right\} \\
I_{A} & =\left\{v \in V \mid v=A^{n} w \text { for some } w\right\}
\end{aligned}
$$

The following is an immediate consequence of this decomposition.
Lemma 1. A linear transformation B commutes with A if and only if
and
(i) $B\left(K_{A}\right) \subset K_{A}, B\left(I_{A}\right) \subset I_{A}$
(ii) $B \mid K_{A}$ commutes with $A\left|K_{A}, B\right| I_{A}$ commutes with $A \mid I_{A}$.

Received February 5, 1959. The first author was a National Science Foundation Fellow 1958-59. The second author was a John Simon Guggenheim Memorial Fellow 1958-59.

