SOME CONGRUENCES INVOLVING SUMS
 OF BINOMIAL COEFFICIENTS

By L. Carlitz

1. Adem $[1 ; 233-237]$ has proved the following congruence:

$$
\begin{equation*}
\sum_{k=0}^{n}\binom{a-k(q-1)}{k}\binom{b+k(q-1)}{n-k} \equiv\binom{a+b+1}{n} \quad(\bmod \quad q) \tag{1}
\end{equation*}
$$

Here q is prime, $n \geq 0$, and a, b are arbitrary integers. Since

$$
\binom{a-k(q-1)}{k}=(-1)^{n}\binom{k q-a-1}{k},
$$

(1) is easily seen to be equivalent to

$$
\begin{equation*}
\sum_{k=0}^{n}\binom{a+k q}{k}\binom{b+(n-k) q}{n-k} \equiv\binom{a+b+n q}{n} \quad(\bmod q) \tag{2}
\end{equation*}
$$

We should like to point out that the congruence (2) is an immediate consequence of certain known algebraic identities. Indeed, in this way we find that (2) holds for arbitrary integers q (not necessarily prime) and also for a, b rational numbers whose denominators are prime to q.

Put

$$
A_{k}(a, q)=\frac{a}{a+k q}\binom{a+k q}{k}
$$

Then we have the identity

$$
\sum_{k=0}^{n} A_{k}(a, q) A_{n-k}(b, q)=A_{k}(a+b, q) .
$$

Moreover

$$
\begin{gather*}
\sum_{k=0}^{\infty} A_{k}(a, q)=x^{a}, \tag{3}\\
\sum_{k=0}^{\infty}\binom{a+k q}{k} z^{k}=\frac{x^{a+1}}{(1-q) x+q},
\end{gather*}
$$

where

$$
\begin{equation*}
x-1=x^{a} z \tag{5}
\end{equation*}
$$

For proof of these formulas as well as a number of applications and a detailed

Received February 23, 1959.

