ERGODIC THEORY FOR DISCRETE SEMI-MARKOV CHAINS

By Philip M. Anselone

1. Introduction and summary. The idea of a semi-Markov process is due to K. L. Chung. The only papers on the subject as of January 1959 are those of Lévy [4] and Smith [5].

We consider a semi-Markov chain $\left\{x_{t}, t \varepsilon T\right\}$, where T is the set of nonnegative integers and the x_{t} are countably valued. The semi-Markov chain is defined in terms of a Markov chain $\left\{\phi_{k}, k \varepsilon T\right\}$ and an increasing sequence $\left\{t_{k}, k \in T\right\}$ of integer valued "transition times" by $x_{t}=\phi_{k}$ if $t_{k} \leq t<t_{k+1}$. Further conditions are included in the complete definition given in §2.

We study this process by a method which differs considerably from those employed by Lévy and Smith. An auxiliary random sequence $\left\{y_{t}, t \varepsilon T\right\}$ is defined by $y_{t}=0$ if $t=t_{k}$ and $y_{t}=t_{k+1}-t$ if $t_{k}<t<t_{k+1}$ for some $k \varepsilon T$. Under specified conditions, $\left\{\left(x_{t}, y_{t}\right), t \varepsilon T\right\}$ is a Markov chain. Standard theory is used in the derivation of ergodic properties of this chain. Using these results, we derive ergodic theorems for the semi-Markov chain $\left\{x_{t}, t \varepsilon T\right\}$. Final results relate the ergodic behavior of $\left\{x_{t}, t \varepsilon T\right\}$ and $\left\{\phi_{k}, k \varepsilon T\right\}$.

The method just described also applies to continuous parameter semi-Markov processes. However, the situation is complicated by the appearance of discontinuities at $t=t_{k}, k \varepsilon T$. Feller encountered the same difficulty in [3; 427], in connection with a similar method. We present no treatment of continuous parameter semi-Markov processes in this paper.

All random variables introduced below are defined with respect to a fixed probability space ($\Omega, \mathfrak{F}, \mathbf{P}$). Statements involving conditional probabilities or expectations have the implicit qualification, "whenever the symbols are defined." For the pertinent general theory of Markov chains, see Feller [2] or Doob [1].
2. Definition of the semi-Markov chain. Let $\left\{\phi_{k}, k \in T\right\}$ denote a Markov chain with stationary transition matrix $\left[p_{i m}\right]$ and values in a countable set I. Thus,

$$
\begin{equation*}
\mathbf{P}\left\{\phi_{k+1}=m \mid \phi_{k}=i\right\}=p_{i m} . \tag{1}
\end{equation*}
$$

Let $t_{k}, k \varepsilon T$, denote integer-valued random variables such that

$$
\begin{equation*}
\theta_{k}=t_{k+1}-t_{k}>0, \quad t_{0} \equiv 0 \tag{2}
\end{equation*}
$$

Assume that

$$
\begin{equation*}
a_{i j}=\mathbf{P}\left\{\theta_{k}=j \mid \phi_{k}=i\right\} \tag{3}
\end{equation*}
$$

Received April 13, 1959. Presented to the American Mathematical Society, January 20, 1959.

