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Let F be a field and /be an algebra over F, not necessarily finite dimensional
and not necessarily associative. The powers of an element a in are in general
not well-defined, but we shall say that H is a nilalgebra if given a, there exists
an integer such that every product of factors each of them equal to a, in
whatever association, vanishes. If can be chosen independent of a, then we
will say that I has bounded nilindex, or nilindex if is the smallest such integer.
If the powers of every a in are independent of the association of factors, i.e.,
if every single element of generates an associative subalgebra, then I is called
power-associative. Every element a of I gives rise, by left and by right multi-
plication, to linear transformations of considered as a vector space over F.
The transformations defined by x -.-) xa and x ax for all x in H are generally
denoted, respectively, by Ra and La. As the algebras considered in this paper
will all be commutative, we shall in fact use only R, and may write xR for
xa, xR] for (xa)a, and so forth.
The principal purpose of this paper is to demonstrate 1) if H is a commutative

nilalgebra of characteristic zero and bounded nilindex t, then Rt-3 0 for all
a in I, and 2) if H is a commutative, power-associative algebra of characteristic
zero, and if for some a in , a 0, then the algebra generated by R, R..,
is nilpotent of index not more than 2(t 1) -t- 1; in particular, Ra is nilpotent.
(The algebra generated by all R is in fact generated by R and R. alone, a
result due to Albert [1].) The assumption of characteristic zero is not strictly
necessary in the statements of the main propositions. Indeed, the assumption
that the characteristic is sufficiently high compared to will serve.
The material of this paper is drawn in part from the author’s doctoral dis-

sertation, University of Chicago, 1951, and arises from an attempt to answer
certain questions raised by Albert in [1]. The author wishes to express his
thanks to Professor Albert for his kindly advice and assistance, and to him
and to Professor L. J. Paige for their careful reading of the manuscript.

Linearization.. in what follows, systematic use will be made of certain
lemmas on linearization, some of them well-known. For completeness, proofs
of the lemmas needed are given in this section.

Let V and W be vector spaces over a field F. The direct sum of V with itself
n times will be denoted by V, and functions ] from V to W (which for the
moment we do not consider to be multilinear) will be said to have "grade" n,
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