## ERRATA

1. M. N. Mikhail: The square root set of a simple basic set of polynomials, vol. 25(1958), pp. 177-180. M. Nassif and Ragy H. Makar have pointed out that Theorems 1 and 2 of this paper are incorrect. Indeed, they have given counter examples in their paper, M. Nassif and Ragy H. Makar, On non-algebraic basic sets of polynomials, Koninklijke Akademie van Wetenschappen, Series A, vol. 58(1955), pp. 120-129.
2. Robert Heaton: Polynomial 3-cocycles over fields of characteristic p, vol. $26(1959)$, pp. 269-275. (i). In the statements of propositions 1 and 2, replace each occurrence of $h$ by $h_{\gamma}$. In (14) and in (18), insert $\sum_{\gamma}$ before the two terms involving $\gamma$.
(ii) In (22) and in (27) replace $h$ by $h_{\gamma}$, and insert $\sum_{\gamma}$ before the two terms involving $\gamma$. Also, in (27), replace $k$ by $k_{\gamma}$.
(iii). In (26) replace $h$ by $\sum_{\gamma} h_{\gamma}$, and change the exponent on $z$ to $2^{\gamma}$.
3. E. Calabi: An extension of E. Hopf's maximum principle with an application to Riemannian geometry, vol. 25(1958), pp. 45-56:

The proof of Theorem 4 is incorrect, because the inequality on page 55 , line 6 from the bottom, is reversed. To correct the proof, read the last nine lines of page 55 as follows:

$$
\begin{aligned}
\int_{\phi\left(t_{1}\right)}^{\phi(t)} f(s) d s=(n-1) \int_{t_{1}}^{t} \frac{\left(\phi^{\prime}(s)\right)^{2} d s}{s}+\frac{1}{2}\left(\phi^{\prime}(t)\right)^{2} & -\frac{1}{2}\left(\phi^{\prime}\left(t_{1}\right)\right)^{2} \\
& \leq\left(\frac{1}{2}+(n-1) \log \frac{t}{t_{1}}\right)\left(\phi^{\prime}(t)\right)^{2}
\end{aligned}
$$

for $0<t_{1} \leq t$; this can be written in the form

$$
\frac{\phi^{\prime}(t)}{\left(\int_{\phi\left(t_{1}\right)}^{\phi(t)} f(s) d s\right)^{\frac{1}{2}}} \geq\left(\frac{1}{2}+(n-1) \log \frac{t}{t_{1}}\right)^{-\frac{1}{2}} .
$$

Integrating the last two expressions with respect to $t$, we obtain

$$
\int_{t_{1}}^{t_{2}}\left(\frac{1}{2}+(n-1) \log \frac{t}{t_{1}}\right)^{-\frac{1}{2}} d t \leq \int_{\phi\left(t_{1}\right)}^{\phi\left(t_{2}\right)}\left(\int_{\phi\left(t_{1}\right)}^{y} f(s) d s\right)^{-\frac{1}{2}} d y
$$

From the assumption (4.14) it follows that the right-hand member of this last inequality is bounded for all values of $\phi\left(t_{2}\right)$ (for $t_{1}$ fixed); since the left-hand integral diverges as $t \rightarrow \infty$, the inequality establishes an upper bound for the values of $t_{2}$ such that the solution $\phi(t)$ is regular up to $t_{2}$. Thus there exists $\cdots$ (continue with the text).
4. L. Carlitz, Bernoulli and Euler numbers and orthogonal polynomials, vol. $26(1959)$, pp. 1-15. In formula (1.9) on p. 2 replace

$$
{ }_{3} F_{2}\left[\begin{array}{c}
-n, m+1, \frac{1}{2}(1+m+x) \\
1, m+1
\end{array}\right] \text { by }{ }_{3} F_{2}\left[\begin{array}{c}
-n, n+1, \frac{1}{2}(1+m+x) \\
1, m+1
\end{array}\right] .
$$

