ON FIBER HOMOTOPY EQUIVALENCE

By Edward Fadell

Received October 6, 1958. This paper was sponsored in part by the National Science Foundation under Grant NSF G-4223.

1. Introduction. In [2] A. Dold gives a very useful necessary and sufficient condition for two fiber bundles (over a common polyhedral base with locally compact fibers) to be fiber homotopy equivalent [9]. The objective of this paper is to extend Dold's result to Hurewicz fibrations [5] with no local compactness assumption on the fibers involved. This extension is based on a suitable fiber homotopy extension theorem ($\$ 2$) and the use of quasi-topologies [7] in certain function spaces. This extension then provides a tool for showing that certain fiber spaces and fiber bundles are fiber homotopy equivalent. As one application we show that any universal bundle [6] over a polyhedron P, whose group is dominated by a CW-complex, is fiber homotopy equivalent to the fiber space of paths emanating from a fixed point of P. Hence it follows that Milnor's universal bundle [6] over P is fiber homotopic to this fiber space of paths.

2. A fiber homotopy extension theorem.

2.1 Theorem (FHET). Let (E, p, X) and ($E^{\prime}, p^{\prime}, X$) denote Hurewicz fibrations over a common polyhedral base X, and let A denote a subpolyhedron of X. Let $B=(A \times I) \cup(X \times\{0\})$ and $T=(p \times 1)^{-1}(B)=\left(p^{-1}(A) \times I\right) \cup$ ($E \times\{0\}$), where $p \times 1: E \times I \rightarrow X \times I$. Let $\varphi: T \rightarrow E^{\prime}$ denote a given fiberpreserving partial homotopy, i.e., if $(y, t) \varepsilon T, p^{\prime} \varphi(y, t)=p(y)$. Then, there exists a fiber-preserving homotopy $\Phi: E \times I \rightarrow E^{\prime}$ which extends φ, i.e., $\Phi \mid T=\varphi$ and $p^{\prime} \Phi(y, t)=p(y)$ for $(y, t) \varepsilon E \times I$.

Proof. Let U denote an open set in $X \times I$ such that $B \subset U$ and B is a strong deformation retract of U, i.e., there exists a map $H: U \times I \rightarrow U$ such that $H_{0}=1$ ($=$ identity map), $H_{1}(U) \subset B$, and $H(b, t)=b$ for all $b \varepsilon B, 0 \leq t \leq 1$. Then H induces a corresponding map $\tilde{H}: U \rightarrow U^{I}$ such that for $x \in U, \tilde{H}(x)$ is a path from x to $H_{1}(x) \varepsilon B$ and $\widetilde{H}(b), b \in B$, is the constant path at b.

Now, let $\pi_{1}: X \times I \rightarrow X$ denote the natural projection map. π_{1} then induces $\tilde{\pi}_{1}:(X \times I)^{I} \rightarrow X^{I}$. Furthermore, let $V=(p \times 1)^{-1}(U)$. Define a map $\psi:$ $V \rightarrow X^{I}$ by

$$
\psi=\tilde{\pi}_{1} \circ \tilde{H} \circ(p \times 1) \mid V
$$

We will also make use of the following maps. Let $\pi_{2}: E \times I \rightarrow E \pi_{3}: X \times$ $I \rightarrow I$ denote the natural projections and define $\chi: V \rightarrow I$ by $\chi=\pi_{3} \mid B \circ H_{1} \circ$ $(p \times 1) \mid V)$.

