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1. Introduction. Let A be a closed symmetric operator in a Hilbert space
9. If A is a self-adjoint extension of 4 in a possibly larger Hilbert space 9,
let B(\) be its resolvent. If P is the operator of orthogonal projection of
onto 9,

(1) RO\ = PR(\)  (Ix 5 0),

restricted to  is called a generalized resolvent of A. We shall say that A defines
R. The set & of all generalized resolvents of A is a convex set; see [1; 278].
An element R ¢ ® is said to be exireme if it is impossible to express R in the
form B = R, + u.R, , where u, , u, are positive real numbers, u; + p, = 1,
and R, , R, e ®, R, % R, . Let II be the non-real portion of the complex-plane.
In [2] it is shown that ® is the closed convex hull of its extreme points, where
the topology is that of weak operator convergence, uniformly on compact
subsets of II.

We say that a self-adjoint extension A of A is finite-dimensional if dim
($ O $) < «. If 4 is a finite-dimensional extension of 4, then the generalized
resolvent defined by 4 is an extreme point of ®; see [5]. We show in this paper
that if A has finite and equal defect indices, then the generalized resolvents
of A defined by finite-dimensional extensions are dense in ® in the sense that
if R ¢ ®, then there exists a sequence {R,} of generalized resolvents of A, each
R, defined by a finite-dimensional extension of 4, such that || R.(\) — RQ\) || — 0,
uniformly on compact subsets of II. Thus, the extreme points of ® are dense
in ® in the sense of uniform operator convergence, uniformly on compact subsets
of II.

A result similar to this was obtained by I. M. Glazman and P. B. Naiman [3]
for the spectral functions of a second order ordinary differential operator on
a half-axis.

2. The generalized resolvent in terms of the parallel projector. Let 4 be a
closed Hermitian operator in the Hilbert space $. By Hermitian we mean
that (4f, g) = (f, Ag) for all f, g e D(4). If D(A) is dense in P, then 4 is
symmetric.) If IA 5= 0, let @A) = range (A — AE) (where E is the identity
operator in §), and let MA) = H © LA). M) is the defect subspace of
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