SOME ARITHMETIC PROPERTIES OF A SPECIAL SEQUENCE OF POLYNOMIALS

To Alfred Brauer on his sixty-fifth birthday

By L. Carlitz

1. Kelisky [2] has defined a set of integers T_{n} by means of

$$
\begin{equation*}
\sum_{0}^{\infty} T_{n} \frac{x^{n}}{n!}=e^{\arctan x} \tag{1.1}
\end{equation*}
$$

and obtained a number of properties of these numbers, in particular the following interesting arithmetic properties.

If p is an odd prime, then

$$
T_{p} \equiv\left\{\begin{array}{lll}
0 & (\bmod p) & (p=4 n+1) \tag{1.2}\\
2 & (\bmod p) & (p=4 n+3)
\end{array}\right.
$$

if p is a prime of the form $4 n+1, m \geq 1,[m / p]=r$, then

$$
\begin{equation*}
T_{m} \equiv 0 \tag{1.3}
\end{equation*}
$$

$\left(\bmod p^{r}\right)$.
In place of (1.1) there is the equivalent definition

$$
\begin{equation*}
\left(\frac{1+i x}{1-i x}\right)^{-i / 2}=\sum_{0}^{\infty} T_{n} \frac{x^{n}}{n!} \tag{1.4}
\end{equation*}
$$

which suggests the generalization

$$
\begin{equation*}
\left(\frac{1+i x}{1-i x}\right)^{-i z / 2}=\exp (z \arctan x)=\sum_{0}^{\infty} T_{n}(z) \frac{x^{n}}{n!} . \tag{1.5}
\end{equation*}
$$

The polynomial $T_{n}(z)$ has integral coefficients; indeed if we put

$$
\begin{equation*}
\frac{1}{k!}(\arctan x)^{k}=\sum_{n=k}^{\infty} A_{n}^{(k)} \frac{x^{n}}{n!} \tag{1.6}
\end{equation*}
$$

for $k=0,1,2, \cdots$, then by known properties of Hurwitz series, the $A_{n}^{(k)}$ are integers and comparison of (1.5) and (1.6) yields

$$
\begin{equation*}
T_{n}(z)=\sum_{k=0}^{n} A_{n}^{(k)} z^{k} \tag{1.7}
\end{equation*}
$$

It is of course evident from (1.1) and (1.5) that

$$
\begin{equation*}
T_{n}(1)=T_{n} \tag{1.8}
\end{equation*}
$$

Received November 1, 1958.

