FUNCTIONS WITH POSITIVE REAL PART AND SCHLICHT FUNCTIONS

By S. D. BERNARDI

1. Introduction. The Noshiro-Warschawski theorem [6, Theorem 12; 151] and [10, Lemma 1; 312], which is a generalization of a result by J. Wolff [11], states

(1.1) If Re p(z) > 0 in a convex domain D_c , then $\int_0^z p(t) dt$ is univalent (schlicht) in D_c .

The purpose of this paper is to generalize this result as is indicated in Theorem 1, using, with a slight modification, the method employed in [10]. Corollary 1 contains the result (1.1) as a special case and is the source of most of the results presented in the remainder of the paper. The following terminology will be employed. Let δ denote the interior of the unit circle |z| = 1. We shall say that $f(z) \subset (S)$ if $f(z) = z + a_2 z^2 + \cdots$ is regular and univalent in δ . The notation $f(z) \subset (ST)$ indicates that $f(z) \subset (S)$ and maps δ onto a region which is starlike with respect to the origin. Similarly, $f(z) \subset (SC)$ signifies that $f(z) \subset (S)$ and maps δ onto a convex region. Schlicht functions with convex maps are denoted by $f_e(z) = z + \cdots$, while those with starlike maps are denoted by $f_t(z) = z + \cdots$.

THEOREM 1. Let $w = f(z) \subset (S)$ map δ onto a region D. Let D_c denote any convex region containing $D, D_c \geq D$. Suppose the inverse function $f^{-1}(w)$ is regular in D_c and maps D_c onto a region D_{-c} . Let p(z) be regular and Re p(z) > 0 in D_{-c} . Then $\int_0^z p(t)f'(t) dt$ is regular and univalent in D_{-c} .

(1.2) COROLLARY 1. Let $f(z) \subset (SC)$. Let $p(z) = 1 + p_1 z + \cdots$ be regular and Re p(z) > 0 in δ . Then $\int_0^z p(t) f'_o(t) dt \subset (S)$.

2. Proof of Theorem 1. We note that since f(z) is univalent in δ , it follows that $D_{-c} \geq \delta$. Make the change of variables $u = f(\zeta)$ and obtain

$$F(z) = \int_0^z p(\zeta) f'(\zeta) \, d\zeta = \int_0^{f(z)} p[f^{-1}(u)] \, du$$

Let z_1 , z_2 be any two points of δ , and let $f(z_2) = f(z_1) + Le^{i\alpha}$. Integrating along the straight segment joining $f(z_1)$ and $f(z_2)$ we have $u = f(z_1) + te^{i\alpha}$, $0 \le t \le L$, so that

$$|F(z_2) - F(z_1)| = \left| \int_{f(z_1)}^{f(z_2)} p[f^{-1}(u)] \, du \right| = \left| \int_0^L p[f^{-1}(f(z_1) + te^{i\alpha})] e^{i\alpha} \, dt \right|.$$

Received January 13, 1958; in revised form, June 21, 1959.