REPRESENTATIONS OF EVEN FUNCTIONS (mod r), III. SPECIAL TOPICS

By Eckford Cohen

1. Introduction. This paper is the concluding article [4], [5] in a series of three papers concerning the theory of even functions $(\bmod r)$. We shall assume the results, nomenclature, and notation of the first and second papers, denoted here by I and II, respectively. Reference numbers with an asterisk refer to the bibliography of I.
The paper is concerned with five topics: arithmetical averages, mean values, sums of finite primes, orthogonality properties, series expansions. We discuss briefly the content of the paper.

Section 2 is concerned with the average $A(f(n, r))$ of a real-valued even function $f(n, r)$,

$$
\begin{equation*}
A(f(n, r))=\frac{1}{r} \sum_{a(\bmod r)} f(a, r) . \tag{1.1}
\end{equation*}
$$

By virtue of [9*, (1), (8)] one obtains

$$
\begin{equation*}
A(f(n, r))=\alpha(r), \quad(\alpha(r)=\alpha(1, r)), \tag{1.2}
\end{equation*}
$$

where $\alpha(d, r), d \mid r$, represents the general Fourier coefficient of $f(n, r)$. In the r-dimensional Euclidean space S_{r} of periodic functions $(\bmod r)$, the even functions form a subspace E_{r} of dimension $\tau(r)=$ the number of divisors of r. Consequently, by Parseval's relation for finite dimensional spaces $[8, \S 8.5,(7)]$ and the fact that E_{r} has the orthonormal basis, $c(n, d) /(r \phi(d))^{\frac{1}{2}}, d \mid r$, it follows that

$$
\begin{equation*}
A\left(f^{2}(n, r)\right)=\sum_{d \mid r} \alpha^{2}(d, r) \phi(d) . \tag{1.3}
\end{equation*}
$$

This relation is also a consequence of formulas (4.1) and (4.2) of II.
It is easily seen that $f(n, r)$ defines a discrete random variable (§2). This observation is used, in conjunction with results of elementary probability theory, to obtain in §2 estimates involving the averages of even functions (Theorems 1, 2 and Corollaries). A number of special functions discussed in I and II are used to illustrate the ideas of this section, for example, the functions $\theta(n, r), \epsilon(n, r), c^{2}(n, r)$, and $\tau(n, r)$.

In §3 an approximation to the mean value of $f(n, r)$ is obtained (Theorem 3). The proof of this result is based on a trigonometric estimate which sharpens an earlier estimate due to Carmichael (see Remark, §3).

Let J_{r} denote the residue class ring of the ring of integers $(\bmod r)$. In $\S 4$ we are concerned with the function $G_{s}(\rho)$, defined to be the number of solutions Received May 22, 1958.

