A PROPERTY OF ENTIRE FUNCTIONS OF SMALL ORDER AND FINITE TYPE

By Q. I. RAHMAN

The object of this note is to prove the following

THEOREM. Let f(z) be an entire function of order ρ ($0 < \rho < 2$) and finite type. If f(0) = 1, then

(A)
$$\int_{R}^{S} \frac{\log |f(z)|}{|z|^{1+\rho}} d|z|$$

is bounded as R and S tend to infinity with R < S and S/R = O(1) and z varies along any path joining R and S.

The above theorem is of the same general nature as the Faber-Pólya theorem [3, Theorem 13], although neither includes the other.

Proof of the theorem. Clearly (A) is bounded above. To show that it is bounded below it is sufficient to prove that

$$\int_{R}^{S} \frac{\log |f(z)f(-z)|}{|z|^{1+\rho}} d|z|$$

is bounded below. Let $z = re^{i\theta}$ and

$$f(z) = e^{cz} \prod_{n=1}^{\infty} \left(1 - \frac{z}{z_n}\right) \exp\left(\frac{z}{z_n}\right);$$

then

$$f(z)f(-z) = g(z^2) = g(r^2 e^{2i\theta}) = \prod_{n=1}^{\infty} \left(1 - \frac{z^2}{z_n^2}\right).$$

Hence we may consider

$$\int_{R}^{S} \frac{\log |g(r^{2}e^{2i\theta})|}{r^{1+\rho}} dr = \frac{1}{2} \int_{R^{2}}^{S^{2}} \frac{\log |g(te^{2i\theta})|}{t^{1+\rho/2}} dt.$$

g(z) is of mean type, order $\rho/2$. So is

$$G(z) = \prod_{n=I}^{\infty} \left(1 + \frac{z}{r_n^2}\right),$$

and

$$|G(-r)| \leq |g(\operatorname{re}^{i\theta})|.$$

Received June 18, 1958. Research supported by the National Science Foundation.