SOME STONE SPACES AND RECURSION THEORY

By A. Nerode

In this paper certain topological spaces arising in recursion theory are characterized as representation spaces of distributive lattices. Theorems of the type obtained by Areskin [2] for representation spaces of free distributive lattices are extended to these spaces using the topological dual to the imbedding of a distributive lattice in a Boolean algebra (MacNeille [7], Peremans [9]). The partial recursive functionals of recursion theory (Kleene [5], Kuznecov and Trahtenbrot [6], Uspenskiĭ [14]) are identified as continuous maps between representation spaces and thence characterized as dual in a natural sense to a class of homomorphisms between distributive lattices.

1. **Preliminaries.** A Stone space [13] is a compact T_0 -space X in which: the collection X^* of compact-open sets forms a base for open sets; X^* is closed under finite intersection; whenever A is a subcollection of X^* closed under finite intersection and Y is a closed subset of X such that $a \cap Y$ is non-null for all a in A, then $(\bigcap_{a \in A} a) \cap Y$ is non-null.

If K is a set, denote by $\mathbf{P}(K)$ the collection of all subsets of K. If $L \subset K$, denote by $\mathbf{U}(L)$ the collection of all subsets of K including L. By the weak topology on $\mathbf{P}(K)$ is meant the topology with open base consisting of $\mathbf{U}(L)$ for finite L; weakly closed subspaces of $\mathbf{P}(K)$ coincide with properties of finite character of subsets of K (Birkhoff [3; 42]). An example from logic: suppose M, N are sets and $K = M \times N$. Let $X \subset \mathbf{P}(K)$ consist of all partial functions on M to N; that is, X consists of all functions with domain a subset of M, range a subset of N. Then X is weakly closed.

We assume by definition that a distributive lattice possesses a zero 0 and a unit 1, that a lattice homomorphism preserves 0 and 1, and that a sublattice has the same 0, 1 as the whole lattice. With a distributive lattice A is associated a topological space A^* consisting of all proper prime filters (proper prime dual ideals) of A, regarded as a weak subspace of $\mathbf{P}(A)$.

THEOREM 1.1. (Birkhoff-Stone) Let A be a distributive lattice. Then A^* is a Stone space and there is an isomorphism from A onto A^{**} given by $a \to \hat{a} = [x \ \epsilon \ A^* | a \ \epsilon \ x]$. Further, the lattice of ideals of A is isomorphic to the lattice of open sets of A^* , where an ideal I corresponds to the open set $\bigcup_{a \in I} \hat{a}$. Let X be a Stone space. Then X^* is a distributive lattice of sets and there is a homeomorphism from X onto X^{**} given by $x \to \hat{x} = [a \ \epsilon \ X^* | x \ \epsilon \ a]$.

Call a continuous map between Stone spaces *strongly continuous* if the inverse image of a compact-open set is compact-open.

Received May 21, 1958. The author is a National Science Foundation Postdoctoral Fellow.