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In this paper certain topological spaces arising in recursion theory are
characterized as representation spaces of distributive lattices. Theorems of
the type obtained by Areskin [2] for representation spaces of free distributive
lattices are extended to these spaces using the topological dual to the imbedding
of a distributive lattice in a Boolean algebra (MacNeille [7], Peremans [9]). The
partial recursive functionals of recursion theory (Kleene [5], Kuznecov and
Trahtenbrot [], Uspenski [14]) are identified as continuous maps between
representation spaces and thence characterized as dual in a natural sense to a
class of homomorphisms between distributive lattices.

1. Preliminaries. A Stone space [13] is a compact T0-space X in which: the
collection X* of compact-open sets forms a base for open sets; X* is closed
under finite intersection; whenever A is a subcollection of X* closed under
finite intersection and Y is a closed subset of X such that a Vh Y is non-null
for all a in A, then (Vh,,A a) Vh Y is non-null.

If K is a set, denote by P(K) the collection of all subsets of K. If L C K,
denote by U(L) the collection of all subsets of K including L. By the weak
topology on P(K) is meant the topology with open base consisting of U(L) for
finite L; weakly closed subspaces of P(K) coincide with properties of finite
character of subsets of K (Birkhoff [3; 42]). An example from logic: suppose
M, N are sets and K M X N. Let X C P(K) consist of all partial functions
on M to N; that is, X consists of all functions with domain a subset of M, range
a subset of N. Then X is weakly closed.
We assume by definition that a distributive lattice possesses a zero 0 and a

unit 1, that a lattice homomorphism preserves 0 and 1, and that a sublattice
has the same 0, 1 as the whole lattice. With a distributive lattice A is associated
a topological space A* consisting of all proper prime filters (proper prime dual
ideals) of A, regardedas a weak subspace of P(A).

THEOREM 1.1. (Birkhoff-Stone) Let A be a distributive lattice. Then A* is
a Stone space and there is an isomorphism ]rom A onto A** given by a ---,

[x A* a x]. Further, the lattice o] ideals o] A is isomorphic to the lattice o]
open sets o] A*, where an ideal I corresponds to the open set ,-)a,x d. Let X be a
Stone space. Then X* is a distributive lattice o] sets and there is a homeomorphism
]rom X onto X** given by x 2 [a X* x a].

Call a continuous map between Stone spaces strongly continuous if the inverse
image of a compact-open set is compact-open.
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