CONCERNING A CERTAIN COLLECTION OF SPIRALS IN THE PLANE

By Steve Armentrout

Let Σ be a family such that G belongs to Σ if and only if G is a collection of mutually exclusive arcs in the plane such that there exist a straight line L and a side D of L such that (1) each arc of G has one endpoint on L and lies, except for this point, in D, (2) G^{*} is bounded, and (3) if g is an arc in G and A is the endpoint of g not on L, then g spirals down on A. The result of this paper is the following: There exists a collection Γ in Σ such that the point set M, to which P belongs if and only if some arc of Γ spirals down on P, is an arc. (For a definition of a spiral, and of spiralling down, see [1].)

1. Notation and terminology. If G is a collection of sets, G^{*} denotes the union of the sets of G. If M is a point set, \bar{M} denotes the closure of M. If x is a point or a set, $\{x\}$ denotes the set whose only element is x. "Interval", used without further qualification, means "straight-line interval"; similarly for "segment". The straight-line interval $A B$ is often denoted by $A B$.

The statement that the $\operatorname{arc} M$ is an A-arc means that there exist two points P and Q and a sequence of points $P_{0}, P_{1}, P_{2}, \cdots$ such that (1) P is P_{0}, P_{1} is vertically below P_{0}, and P_{2} is on the horizontal line through P_{1} and to the left of P_{1}, (2) if n is a positive integer, then the angle $P_{n-1} P_{n} P_{n+1}$ is a right angle and has P_{n+2} in its interior, (3) there is a horizontal line h below P_{0} such that for each positive integer n, P_{n} is below h, (4) the sequence $P_{0}, P_{1}, P_{2}, \ldots$ converges to Q, and (5) M is $\bigcup_{n=0}^{\infty} P_{n} P_{n+1} \cup\{Q\}$. The points P and Q are called the upper and lower endpoints, respectively, of M. Note that M spirals down on Q.

The statement that the domain D is an A-domain means that there exist three points P, Q, and R, such that $P Q$ is horizontal, and two A-arcs, $P R$ with upper endpoint P and $Q R$ with upper endpoint Q, having only R in common, such that D is the interior of the simple closed curve $P R \cup Q R \cup P Q$. Let $C(D)$ be a set such that x belongs to $C(D)$ if and only if for some segment t, either vertical or horizontal, with one endpoint on the arc $P R$, the other on the arc $Q R$, and lying wholly in D, x is the length of t. Let $W(D)$ denote the least upper bound of the number set $C(D)$. The straight-line interval $P Q$ and $\{R\}$ are called the upper and lower ends, respectively, of D.
The statement that the arc K is a B-arc means that there exist an A-arc $P Q$ whose upper endpoint is P and a point X of the segment $P Q$ of the $\operatorname{arc} P Q$ such

[^0]
[^0]: Received April 10, 1958; Presented by title to the American Mathematical Society, February 25, 1956, under the title $O n$ spirals in the plane. This paper is a revision of a thesis written under the supervision of Professor R. L. Moore and presented to the University of Texas in partial fulfillment of the requirements for the Ph.D. degree.

