ALL LINEAR OPERATORS LEAVING THE UNITARY GROUP INVARIANT

By Marvin Marcus

Let M_{n} denote the linear space of all n-square matrices over the complex numbers. Let L_{n} be the algebra of all linear transformations on M_{n} to M_{n} and let O_{n} be the unitary group in M_{n}. We denote by Ω_{n} the multiplicative semigroup in L_{n} having the property that $T \varepsilon \Omega_{n}$ if and only if $T\left(O_{n}\right) \subseteq O_{n}$; that is, Ω_{n} is the set of linear transformations on M_{n} to M_{n} which preserve the unitary property. The purpose of this paper is to discuss the structure of Ω_{n}. Let Q denote the two-element subgroup of Ω_{n} consisting of the identity and the transformation σ mapping every A into A^{\prime} where A^{\prime} is the transpose of A.

The result of this paper is contained in the following
Theorem. Ω_{n} is a group. $O_{n} \cdot X \widetilde{O}_{n}$ is a normal subgroup of Ω_{n} and

$$
\begin{equation*}
\Omega_{n} / 0_{n} \cdot X \widetilde{O}_{n}=Q \tag{1}
\end{equation*}
$$

The notation we use here is as follows. By $U \cdot X V$ we mean the direct product of U and V in $M_{n} ; O_{n} \cdot X \widetilde{O}_{n}$ is the direct product of the group O_{n} with its antiisomorphic image \widetilde{O}_{n}. If $A_{i} \varepsilon M_{n}$ for $j=1, \cdots, m$ then $\sum_{i=1}^{m}+A_{j}$ is the direct sum of the $A_{i} . V^{(n)}$ will be the unitary n-space of complex n-tuples with inner product $(x, y)=\sum_{i=1}^{n} x_{i} \tilde{y}_{i} . A^{*}$ denotes the complex conjugate transpose of A. If $T \varepsilon L_{n}$, we will write

$$
T=\left(T_{i j}\right)
$$

to mean that the n^{2}-square matrix T is partitioned into $n^{2} n$-square matrices $T_{i j}, i, j=1, \cdots, n$. If $A \varepsilon M_{n}$ has real eigenvalues, we denote these as

$$
\lambda_{1}(A) \geq \lambda_{2}(A) \geq \cdots \geq \lambda_{n}(A)
$$

The j-th column vector of $A \in M_{n}$ will be systematically denoted by $v_{i}(A)$. The n-tuple of numbers with 1 in position i and 0 elsewhere is ϵ_{i}. It is clear that we may regard the elements of M_{n} as n^{2}-tuples as follows: let r be an integer in $1, \cdots, n^{2}$ and write $r=q_{r} n+j_{r}$ where $0 \leq j_{r}<n$; if $A \varepsilon M_{n}$ then as an element in $V^{\left(n^{2}\right)}$ let its r-th component be ($v_{\text {ar }}(A), \epsilon_{i_{r}}$).

It is clear that (1) is the same as saying $T \varepsilon \Omega_{n}$ if and only if

$$
\begin{equation*}
T(A)=U A V \tag{2}
\end{equation*}
$$

or

$$
\begin{equation*}
T(A)=U A^{\prime} V \tag{3}
\end{equation*}
$$

Received January 29, 1958. The author would like to thank R. Restrepo and B. N. Moyls for their suggestions in the preparation of this paper. This work was supported in part by U.S. National Science Foundation Research Grant NSF-G5416.

