DIRICHLET MULTIPLICATION IN LATTICE POINT PROBLEMS

By J. P. Tull

E. Landau [3] has given a theorem on the convergence of the Dirichlet product which can be stated in terms of summatory functions as follows. We assume (a_n) and (b_n) are complex sequences and (ξ_n) is a strictly increasing, unbounded positive sequence. If (η_n) is the strictly increasing sequence of the distinct values of $\xi_{\mu}\xi_{\nu}$, $\mu \geq 1$, $\nu \geq 1$, and

$$c_n = \sum_{\xi_{\mu}\xi_{\nu}=\eta_n} a_{\mu}b_{\nu}$$

we have

THEOREM 1. Given non-negative real numbers α , β , ρ , τ with $\alpha \leq \rho$, $\beta \leq \tau$, $\rho \geq \beta$, $\tau \geq \alpha$, $\rho + \tau - \alpha - \beta > 0$, if for each $\epsilon > 0$

$$A(x) = \sum_{\xi_n < x} a_n = O(x^{\alpha + \epsilon}), \qquad \sum_{\xi_n < x} |a_n| = O(x^{\rho + \epsilon}),$$
$$B(x) = \sum_{\xi_n < x} b_n = O(x^{\beta + \epsilon}), \qquad \sum_{\xi_n < x} |b_n| = O(x^{\tau + \epsilon})$$

for all $x \geq 1$, then for each $\epsilon > 0$,

$$C(x) = \sum_{\eta_n < x} c_n = O(x^{\omega + \epsilon})$$

with

$$\omega = \frac{\rho\tau - \alpha\beta}{\rho + \tau - \alpha - \beta}.$$

(We have taken the liberty to change Landau's notation.)

In this paper we shall give in Theorem 2 a generalization of Theorem 1 for the case where A(x) and B(x) are representable in the form

(1)
$$\sum_{\mu=1}^{h} x^{\alpha_{\mu}} P_{\mu}(\log x) + O(x^{\alpha} \log^{l} (x+1))$$

where the α_{μ} are complex numbers and the P_{μ} are polynomial functions. Thus we are able to summarize a method of attack on a certain class of lattice point problems.

We shall not need to assume that the functions A and B are summatory functions, for we can just as well define C as the Stieltjes resultant of A and B; i.e.

(2)
$$C(x) = \int_{1}^{x} A(x/u) \, dB(u)$$

Received January 30, 1958.