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1. Introduction. As an application of the Hahn-Banach theorem, S. Banach
[1; 33, 34] showed the existence of a ’generalized limit’; a translation-invariant
positive functional of norm one on the space of all bounded real-valued functions
on the line, or integers. Other proofs of the same fact depend on the compactness
property of bounded sets in the conjugate space of a Banach Space. The proofs
of Markov [9] and Kakutani [6; 1017-1019] invoke in particular the fixed-point
property of the required functional. On the other hand, such fixed points are
a standard feature of mean ergodic theorems [4], and this fact is used by M. M.
Day [3; Theorem 2] who demonstrated the equivalence of one type of ergodicity
of a semigroup in its bounded representations with the existence of an invariant
mean.
The present work is concerned with two digressions on these researches.

First, following [8] and [5], there is the question of the set of all Banach limits:
what are their extreme values on a given function? For a typical general case,
which happens to be ergodic, this question is answered in Theorem 3 via the
exhibition of all these limits as the set of all cluster points of a certain net of
functionals. The second digression is into the non-ergodic situation, but where
mean-value operators of some weaker sort are available. In 4 and 5 the
operators Up do not lie in the set K of Day’s formulation [3, Definition 1], yet
the net {Up} still has enough connection with the translation and rotation
operators to produce Banach limits. The question of how many was treated
in [11]; it is, for the case of the real line, further clarified in 4. 2 contains the
fixed point theorem and construction needed throughout the sequel.

2. The fixed point theorem. We shall employ the following notations: E is
a locally convex linear topological space (real or complex), E’ its conjugate
space, L(E, E) the space of continuous linear mappings of E into E. The value
of x’ . E’ at x E will be denoted (x’, x). E is E’ in its weak topology (pointwise
convergence on E). If A is a subset of a linear space, A denotes its convex
extension, A its linear extension, and [A] its closed convex extension (where
there is a topology). If {x. a A} is a net [7; 65ff], lp.x, will denote its set of
cluster points; lp.x. ’.o,. (J.>.ox.) where the bar denotes closure. If
5 C L(E, E), 5’ will denote the set of elements in L(Er, E’) adjoint to the members
of 5. Algebraic set notations, such as 5x for Tx T 5 }, and 5(A) Tx T . ,
x A will be used. The zero of E will be denoted 8, and 8’ the zero of E’.
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