BERNOULLI AND EULER NUMBERS AND ORTHOGONAL POLYNOMIALS

By L. Carlitz

1. Introduction. Touchard [7] has constructed a set of polynomials $\Omega_{n}(z)$ such that

$$
\begin{equation*}
B^{r} \Omega_{n}(B)=K_{n} \delta_{r n} \quad(0 \leq r \leq n), \tag{1.1}
\end{equation*}
$$

where after expansion of the left member B^{n} is replaced by B_{n},

$$
\begin{equation*}
e^{B x}=\sum_{n=0}^{\infty} B_{n} \frac{x^{n}}{n!}=\frac{x}{e^{x}-1}, \tag{1.2}
\end{equation*}
$$

and

$$
\begin{equation*}
K_{n}=\frac{(-1)^{n}}{2 n+1} \frac{1}{2^{n}} \frac{(n!)^{4}}{\{1.3 .5 \cdots(2 n-1)\}^{2}} . \tag{1.3}
\end{equation*}
$$

Also $\Omega_{n}(z)$ satisfies

$$
\begin{equation*}
\Omega_{n+1}(z)=(2 z+1) \Omega_{n}(z)+\frac{n^{4}}{4 n^{2}-1} \Omega_{n-1}(z) \tag{1.4}
\end{equation*}
$$

Using (1.4) Wyman and Moser [10] showed that

$$
\begin{equation*}
\Omega_{n}(z)=2^{n} \cdot n!\binom{2 n}{n}^{-1} \sum_{2 r \leq n}\binom{2 z+n-2 r}{n-2 r}\binom{z}{r}^{2} \tag{1.5}
\end{equation*}
$$

and by means of (1.5) the writer [3] showed that

$$
\begin{equation*}
\Omega_{n}(z)=(-2)^{n} n!\binom{2 n}{n}^{-1} F_{n}(2 z+1) \tag{1.6}
\end{equation*}
$$

where $F_{n}(z)$ is Bateman's polynomial [1]

$$
F_{n}(z)={ }_{3} F_{2}\left[\begin{array}{c}
-n, n+1, \frac{1}{2}(1+z) \tag{1.7}\\
1,1
\end{array}\right] .
$$

In the present paper we show first that Touchard's result (1.1) can be extended to the numbers

$$
\begin{equation*}
\beta_{n}=\beta_{n}(\lambda)=\frac{B_{n+1}(\lambda)-B_{n+1}}{(n+1) \lambda} \tag{1.8}
\end{equation*}
$$

where $B_{n}(\lambda)$ is the Bernoulli polynomial defined by

$$
\frac{z e^{z}}{e^{z}-1}=\sum_{n=0}^{\infty} B_{n}(\lambda) \frac{z^{n}}{n!} .
$$

Received February 1, 1958.

