FUNCTIONAL INVARIANTS OF A LINEAR HOMOGENEOUS INTEGRO-DIFFERENTIAL EQUATION

By Smbat Abian and I. A. Barnett

In his book, Projective Differential Geometry of Curves and Ruled Surfaces, Wilczynski obtained the semi-invariants, invariants and covariants of a system of two differential equations in two dependent variables. More recently Barnett and Reingold [2] treated this problem for n equations in n dependent variables and found special types of invariants. Later Levine [4] and Abian [1] further generalized this problem and gave a method for finding invariants and covariants of general order r. In 1950 Barnett [3] proposed the problem of finding functional invariants of an integro-differential equation of the second order under Fredholm transformation, and gave some simple examples. The purpose of the present paper is to further extend these last results to homogeneous integro-differential equations of order $m \geq 2$.

1. Statement of the problem. Consider the linear homogeneous integrodifferential equation

$$
\begin{equation*}
y^{(m)}(x ; t)+\int_{0}^{1} a_{1}(x, u ; t) y^{(m-1)}(u ; t) d u+\cdots \tag{1}
\end{equation*}
$$

$$
+\int_{0}^{1} a_{m}(x, u ; t) y(u ; t) d u=0
$$

where t is a real parameter ranging on $\left[t_{1}, t_{2}\right]$ and such that for each t the given kernels $a_{i}(x, u ; t)$ are continuous on the unit square, and the function $y(x ; t)$ is continuous on the unit interval. The i-th derivative of $y(x ; t)$ with respect to t is denoted by $y^{(i)}(x ; t)$. It is assumed also that the functions depending on t possess as many derivatives with respect to t as needed.

Consider also the Fredholm transformation of $y(x ; t)$ given by

$$
\begin{equation*}
y(x ; t)=\bar{y}(x ; t)+\int_{0}^{1} k(x, u ; t) \bar{y}(u ; t) d u \tag{2}
\end{equation*}
$$

where for each t the kernel $k(x, u ; t)$ is continuous on the unit square, and has a non-vanishing Fredholm determinant.

The transformation $y(x ; t) \rightarrow \bar{y}(x ; t)$ given by (2) transforms (1) into an equation of the same type with new coefficients $\bar{a}_{i}(x, u ; t)$. If f is a functional involving the $a_{i}(x, u ; t)$ and their derivatives with respect to t, a functional \bar{f} can be formed by replacing $a_{i}(x, u ; t)$ and their derivatives by $\bar{a}_{i}(x, u ; t)$ and the corresponding derivatives of $\bar{a}_{i}(x, u ; t)$ with respect to t. The problem is then to find functionals f such that $f=\bar{f}$.

Received October 4, 1957.

