THE CONTINUOUS TRANSFORMATION RING OF BIORTHOGONAL BASES SPACES

By Vera Pless

1. Introduction. This note is concerned with biorthogonal bases spaces. These are dual vector spaces M and N over a division ring $D[2 ; 15]$ such that there exist equipotent bases $\left\{x_{i}\right\}$ for M and $\left\{y_{i}\right\}$ for N with $\left(x_{i}, f_{i}\right)=\delta_{i j}$. We shall refer to the basis $\left\{x_{i}\right\}$ as the good basis. Some of the interest in biorthogonal bases spaces stems from the following theorem proved by Mackey in [7; 171]: if $[M: D]=[N: D]=\boldsymbol{\aleph}_{0}$, then M and N are biorthogonal bases spaces.

Throughout this paper M and N will be assumed to be biorthogonal bases spaces. We will let $L(M, N)$ denote the ring of all continuous linear transformations on M and $F(M, N)$ denote the ring of finite-valued linear transformations in $L(M, N)$. Continuous means continuous in the N-topology of M. A transformation a on M is continuous in this topology if and only if there exists a transformation a^{\prime} on N such that $(x a, f)=\left(x, a^{\prime} f\right)$ for all $x \varepsilon M$ and all $f \varepsilon N$. In the special case of biorthogonal bases spaces there is a particularly simple representation of continuous linear transformation [2; 17]. A transformation a is in $L(M, N)$ if and only if the matrix of a with respect to the basis $\left\{x_{i}\right\}$ is row and column finite.

Let $L(M)$ denote the ring of all linear transformations on M and $F(M)$ the ring of all finite-valued linear transformations in $L(M)$. It is known [4; 789] that any two-sided ideal I of $L(M)$ consists of all those linear transformations of rank less than some infinite cardinal $\boldsymbol{\aleph}_{I}$ where $\boldsymbol{\aleph}_{I} \leq \operatorname{dim} M$. From this it can be proven $[6 ; 18]$ that $L(M) / F(M)$ is primitive without one-sided minimal ideals, further that the quotient of any two two-sided ideals in $L(M)$ has this structure. In this paper we show that exactly the same results hold if M and N are biorthogonal bases spaces. In the final theorem we show that $L(M, N)$ and its ideals are not isomorphic to $L(M)$ and its ideals. In fact, we show that if $I_{1} \supset I_{2}$ are two ideals in $L(M, N)$, then I_{1} / I_{2} is not regular while it is known that the corresponding object for $L(M)$ is regular. (The symbols " D " and " C " are used in the strong sense, excluding equality.)

We would like to point out that Orenstein (unpublished) has shown that a closed subspace K of M has a closed complement such that the annihilators of K and this complement add up to all of N. We make no use of this fact in this work.

I would like to express my thanks to Professor Alex Rosenberg for his aid and guidance in this work.
2. Notation and preliminary lemmas. Let $\operatorname{dim} M=\boldsymbol{\aleph}$ where $\boldsymbol{\aleph}$ is an infinite

Received August 27, 1957. This paper is part of a thesis submitted to Northwestern University in partial fulfillment of the Ph.D. degree.

