SCALAR POLYNOMIAL EQUATIONS FOR MATRICES OVER A FINITE FIELD

By John H. Hodges

1. Introduction and notation. Let GF(q) denote the finite field of order $q = p^n$. Greek capitals θ, ϕ, \cdots will denote square matrices over GF(q). If E = E(x) is a monic polynomial over GF(q), let N(E, m) be the number of matrices θ of order m such that $E(\theta) = 0$. In this paper, the classical theory of the scalar polynomial equation for matrices over a field is combined with a theorem of L. E. Dickson [1], concerning commutativity of certain matrices over GF(q), to give an explicit formula (Theorem 2) for N(E, m). In §5, we illustrate the formula by considering the case $E(x) = x^e - 1$. Finally, in §6, we treat the even more special case where $E(x) = x^3 - 1$. We remark that the case $E(x) = x^2 - 1$ has been discussed in detail in another note [2].

The author wishes to express his thanks to L. Carlitz, who suggested the inclusion of §5 in this paper and advised in its preparation.

We will need the following well-known formula for the number g(t, d) of non-singular matrices of order $t \ge 1$ over $GF(q^d)$:

(1.1)
$$g(t,d) = q^{dt^*} \prod_{i=1}^t (1-q^{-di}) = \prod_{i=0}^{t-1} (q^{dt}-q^{di}).$$

We also define g(0, d) = 1.

2. The number N(E, m). Let E = E(x) be a monic polynomial over GF(q) and suppose that

(2.1)
$$E = P_1^{h_1} P_2^{h_2} \cdots P_s^{h_s},$$

where the P_i are distinct monic prime polynomials, $h_i \ge 1$ and deg $P_i = d_i$ for $i = 1, 2, \dots, s$. If θ is a matrix of order m such that $E(\theta) = 0$, since the minimum polynomial of θ must divide E, the elementary divisors of $xI - \theta$ are of the form $P_i^{n_i}$ with $1 \le n_i \le h_i$. Suppose that $xI - \theta$ has elementary divisors as follows:

(2.2)
$$k_{ij}$$
 elementary divisors of the form P_i^i ,

where $i = 1, 2, \dots, s$ and for fixed $i, 1 \leq j \leq h_i$ and $k_{ij} \geq 0$ for all i, j. Since the characteristic polynomial F = F(x) of θ is of degree m and is the product of these elementary divisors, corresponding to θ we have a partition $\pi = \pi(m)$ defined by the formula

(2.3)
$$\pi(m): m = \sum_{i=1}^{s} d_i \sum_{j=1}^{h_i} j \cdot k_{ij}, \qquad k_{ij} \ge 0.$$

Received July 1, 1957; in revised form, February 10, 1958. The research for this paper was supported by a National Science Foundation Research Grant, G-2990.