SCALAR POLYNOMIAL EQUATIONS FOR MATRICES OVER A FINITE FIELD

By John H. Hodges

1. Introduction and notation. Let $G F(q)$ denote the finite field of order $q=p^{n}$. Greek capitals θ, ϕ, \cdots will denote square matrices over $G F(q)$. If $E=E(x)$ is a monic polynomial over $G F(q)$, let $N(E, m)$ be the number of matrices θ of order m such that $E(\theta)=0$. In this paper, the classical theory of the scalar polynomial equation for matrices over a field is combined with a theorem of L. E. Dickson [1], concerning commutativity of certain matrices over $G F(q)$, to give an explicit formula (Theorem 2) for $N(E, m)$. In §5, we illustrate the formula by considering the case $E(x)=x^{e}-1$. Finally, in §6, we treat the even more special case where $E(x)=x^{3}-1$. We remark that the case $E(x)=$ $x^{2}-1$ has been discussed in detail in another note [2].

The author wishes to express his thanks to L. Carlitz, who suggested the inclusion of $\S 5$ in this paper and advised in its preparation.

We will need the following well-known formula for the number $g(t, d)$ of non-singular matrices of order $t \geq 1$ over $G F\left(q^{d}\right)$:

$$
\begin{equation*}
g(t, d)=q^{d t^{2}} \prod_{i=1}^{t}\left(1-q^{-d i}\right)=\prod_{i=0}^{t-1}\left(q^{d t}-q^{d i}\right) \tag{1.1}
\end{equation*}
$$

We also define $g(0, d)=1$.
2. The number $N(E, m)$. Let $E=E(x)$ be a monic polynomial over $G F(q)$ and suppose that

$$
\begin{equation*}
E=P_{1}^{h_{1}} P_{2}^{h_{2}} \cdots P_{s}^{h_{s}}, \tag{2.1}
\end{equation*}
$$

where the P_{i} are distinct monic prime polynomials, $h_{i} \geq 1$ and $\operatorname{deg} P_{i}=d_{i}$ for $i=1,2, \cdots, s$. If θ is a matrix of order m such that $E(\theta)=0$, since the minimum polynomial of θ must divide E, the elementary divisors of $x I-\theta$ are of the form $P_{i}^{n_{i}}$ with $1 \leq n_{i} \leq h_{i}$. Suppose that $x I-\theta$ has elementary divisors as follows:

$$
\begin{equation*}
k_{i j} \text { elementary divisors of the form } P_{i}^{i}, \tag{2.2}
\end{equation*}
$$

where $i=1,2, \cdots, s$ and for fixed $i, 1 \leq j \leq h_{i}$ and $k_{i j} \geq 0$ for all i, j. Since the characteristic polynomial $F=F(x)$ of θ is of degree m and is the product of these elementary divisors, corresponding to θ we have a partition $\pi=\pi(m)$ defined by the formula

$$
\begin{equation*}
\pi(m): m=\sum_{i=1}^{s} d_{i} \sum_{i=1}^{h_{i}} j \cdot k_{i j}, \quad k_{i j} \geq 0 \tag{2.3}
\end{equation*}
$$

Received July 1, 1957; in revised form, February 10, 1958. The research for this paper was supported by a National Science Foundation Research Grant, G-2990.

