
FUNDAMENTAL SOLUTIONS OF A LINEAR ORDINARY DIFFER-
ENTIAL EQUATION OF THE THIRD ORDER IN THE
NEIGHBORHOOD OF A SIMlLE SECOND ORDER

TURNING POINT

BY L. R. BRAGG

1. Introduction. This paper is concerned with a determination of funda-
mental solutions, valid over a compact set C of the complex z-plane, of special
class of differential equations of the form

(1.1) y’"(z) - hi(z, h)y"(z) + h2h2(z, h)y’(z) + h3h(z, k)y(z) O.

The complex parameter ), is assumed large in absolute value, and the h (z, },)
are series of the form

h,(z, h  (z)X
i=O

the hi;(z) being analytic in z throughout . The structure of will be described
below. As is well-known (see [2]), the solutions of (1.1) depend upon the con-
figuration in the ,-plane of the roots of its auxiliary equation

(1.3) , - hlo(Z), + h.o(Z)/ + ho(Z) O.

The problem considered here is that of describing the initial segments of a
fundamental set of asymptotic solutions of type (1.1) over a compact set in
which (a) two and only two roots of (1.3) meet at a single point such that (b)
the discriminant of (1.3) vanishes to the second degree. The point at which
this occurs is called a simple turning point o] the second order. An analogous
problem for a second order differential equation has been solved by R. W.
McKelvey [6]. The solutions of (1.1) have been established [3] in the neighbor-
hood of a point at which (a) holds but at which the discriminant of (1.3) vanishes
to the first degree. Solutions are also known in the vicinity of a point where
three roots of the auxiliary equation meet at a single point at which any two of
them have contact of degree one [4]. For other configurations of the roots of
the auxiliary equation, little is known [1].
The method that has proved fruitful in establishing results in the cases cited

above is that of the related equation. By a related equation is meant a differ-
ential equation which approximates the given equation, say (1.1), and whose
solutions can be given explicitly. In u recent paper [5], Langer has shown that
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