AVERAGES OF CONTINUOUS FUNCTIONS ON COMPACT SPACES

By WALTER RUDIN

Introduction. In this paper, X will always denote a non-empty compact Hausdorff space, and C(X) will be the Banach space of all real-valued continuous functions on X. The set of all integers will be denoted by J, and N will stand for the set of all positive integers; N will sometimes be considered a topological space, with the discrete topology.

The problem under consideration is the convergence of averages of the form

(1)
$$\frac{1}{n}\sum_{i=1}^{n}f(x_i)$$

where $x_i \in X$ and $f \in C(X)$. Of particular interest is the case in which the sequence $\{x_i\}$ is generated by a homeomorphism h of X, in the sense that $x_i = h(x_{i-1})$. Some positive results in this direction are summarized in Part I. The discussion of Theorems 1 and 2 does not differ much from that in [8; 118–9], although the emphasis there is entirely on metric spaces. I have not found Theorem 3 stated in the literature; but the essential part of the proof (the existence of a minimal compact invariant set) is known [3; Theorem 2.22].

In a paper on Banach limits of bounded sequences [4; 83], Jerison made a conjecture concerning the convergence of averages of the above sort if X is $\beta N - N$ (βN is the Čech compactification of N). The conjecture is stated and disproved in Part III. Theorem 6, which goes considerably beyond a mere disproof of Jerison's conjecture, is the principal result of the present paper. Part II contains a description of those properties of βN which are used in the proof of Theorem 6.

Some questions concerning topological properties of compact Hausdorff spaces, which are suggested by the preceding results, are discussed in Part IV.

1. Some positive results.

1.1. Let h be a homeomorphism of X onto X. For $f \in C(X)$ and $x \in X$, define

(2)
$$s_n(f; x) = \frac{1}{n} \sum_{i=0}^{n-1} f(h^i(x)) \qquad (n \in N),$$

where $h^{i}(x) = h(h^{i-1}(x))$.

Pick $x_0 \in X$. For each *n*, the mapping $f \to s_n$ $(f; x_0)$ is a bounded linear functional of norm 1 on C(X). Since the unit sphere in the conjugate space of C(X) is weakly compact, this sequence of functionals has a weak limit point (there may be many limit points, but we focus our attention on one), and by

Received July 19, 1957. This work was done while the author was a Research Fellow of the Alfred P. Sloan Foundation.