TRANSFORMS OF TAUBERIAN SERIES BY RIESZ METHODS OF DIFFERENT ORDERS

By Morris Tenenbaum

1. Introduction. The Riesz transform $R_{n}^{(r)}$ of order r, of a series $u_{1}+u_{2}+\ldots$ is defined by

$$
\begin{equation*}
R_{n}^{(r)}=\sum_{k=1}^{n}\left(1-\frac{k}{n}\right)^{r} u_{k}, \quad(n=1,2,3, \cdots) \tag{1.1}
\end{equation*}
$$

It is our purpose to study the relations between the Riesz transforms of real non-negative orders p and q, of series satisfying the Tauberian condition

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} n\left|u_{n}\right|<\infty \tag{1.2}
\end{equation*}
$$

We shall assume at all times that p and q are real numbers, not necessarily integers, for which $0 \leq p \leq q$. For each $\alpha>0$, let $m(\alpha)$ and $n(\alpha)$ be positive integers, and let $m(\alpha) \rightarrow \infty$ and $n(\alpha) \rightarrow \infty$ as $\alpha \rightarrow \infty$. For convenience, we shall frequently write m, n for $m(\alpha), n(\alpha)$. There is then a least constant B, dependent upon the constants p and q and the functions $m(\alpha)$ and $n(\alpha)$, such that

$$
\begin{equation*}
\limsup _{\alpha \rightarrow \infty}\left|R_{n}^{(\alpha)}-R_{m}^{(p)}\right| \leq B \limsup _{n \rightarrow \infty} n\left|u_{n}\right| \tag{1.3}
\end{equation*}
$$

whenever $\sum u_{n}$ is a series for which (1.2) holds. The constant B may be sometimes finite and sometimes $+\infty$. In the latter case we consider the right member of (1.3) to be $+\infty$ even when $\lim n\left|u_{n}\right|=0$. We shall first determine the manner in which B depends upon p, q and the functions $m(\alpha)$ and $n(\alpha)$. We shall then suppose that p and q are fixed, and characterize the particular functions $m(\alpha)$ and $n(\alpha)$ for which B assumes its least possible value, designated by $H_{p q}$. We shall in addition solve other related problems.

An extensive bibliography of the field in which our problems lie has been given by Agnew [3]. Some of the problems in which we are interested were solved by Agnew [2], [3] for the case in which $p=0$ and $q \geq 0$. Garten [5] solved similar problems, in which Riesz transforms are replaced by Cesàro transforms, for the case in which $p=0$ and q is a positive integer. After the above cited results of Agnew and Garten were obtained, Agnew [4] found that if $\sum u_{n}$ satisfies (1.2), and if $r \geq 0$, then the Riesz transform $R_{n}^{(r)}$ and the Cesàro transform $C_{n}^{(r)}$ of order r are equiconvergent in the sense that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left(R_{n}^{(r)}-C_{n}^{(r)}\right)=0 \tag{1.4}
\end{equation*}
$$

Received June 9, 1957. This paper is a revised version of the author's doctoral dissertation which was written at Cornell University under the direction of Professor R. P. Agnew. His guidance and helpfulness are herewith gratefully acknowledged.

