TRANSFORMS OF TAUBERIAN SERIES BY RIESZ METHODS OF DIFFERENT ORDERS

By Morris Tenenbaum

1. Introduction. The Riesz transform $R_n^{(r)}$ of order r, of a series $u_1 + u_2 + \ldots$ is defined by

(1.1)
$$R_n^{(r)} = \sum_{k=1}^n \left(1 - \frac{k}{n}\right)^r u_k, \qquad (n = 1, 2, 3, \cdots).$$

It is our purpose to study the relations between the Riesz transforms of real non-negative orders p and q, of series satisfying the Tauberian condition

(1.2)
$$\limsup_{n\to\infty} n \mid u_n \mid < \infty.$$

We shall assume at all times that p and q are real numbers, not necessarily integers, for which $0 \le p \le q$. For each $\alpha > 0$, let $m(\alpha)$ and $n(\alpha)$ be positive integers, and let $m(\alpha) \to \infty$ and $n(\alpha) \to \infty$ as $\alpha \to \infty$. For convenience, we shall frequently write m, n for $m(\alpha)$, $n(\alpha)$. There is then a least constant B, dependent upon the constants p and q and the functions $m(\alpha)$ and $n(\alpha)$, such that

(1.3)
$$\limsup_{\alpha \to \infty} |R_n^{(\alpha)} - R_m^{(p)}| \le B \limsup_{n \to \infty} n |u_n|,$$

whenever $\sum u_n$ is a series for which (1.2) holds. The constant *B* may be sometimes finite and sometimes $+\infty$. In the latter case we consider the right member of (1.3) to be $+\infty$ even when $\lim n |u_n| = 0$. We shall first determine the manner in which *B* depends upon *p*, *q* and the functions $m(\alpha)$ and $n(\alpha)$. We shall then suppose that *p* and *q* are fixed, and characterize the particular functions $m(\alpha)$ and $n(\alpha)$ for which *B* assumes its least possible value, designated by H_{pq} . We shall in addition solve other related problems.

An extensive bibliography of the field in which our problems lie has been given by Agnew [3]. Some of the problems in which we are interested were solved by Agnew [2], [3] for the case in which p = 0 and $q \ge 0$. Garten [5] solved similar problems, in which Riesz transforms are replaced by Cesàro transforms, for the case in which p = 0 and q is a positive integer. After the above cited results of Agnew and Garten were obtained, Agnew [4] found that if $\sum u_n$ satisfies (1.2), and if $r \ge 0$, then the Riesz transform $R_n^{(r)}$ and the Cesàro transform $C_n^{(r)}$ of order r are equiconvergent in the sense that

(1.4)
$$\lim_{n \to \infty} \left(R_n^{(r)} - C_n^{(r)} \right) = 0.$$

Received June 9, 1957. This paper is a revised version of the author's doctoral dissertation which was written at Cornell University under the direction of Professor R. P. Agnew. His guidance and helpfulness are herewith gratefully acknowledged.