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1. Introduction. The problem of eigenfunction expansions is essentially that
of exhibiting the spectral resolution of an operator in concrete analytical terms.
In 1910 Hermann Weyl [20] achieved this for self-adjoint second-order ordinary
differential operators. M.H. Stone [18] discussed this result in the light of the
spectral theorem for self-adjoint op.erators on an abstract Hilbert space, and
the result was extended to ordinary differential operators of higher order in
varying degrees of generality by Coddington [6], Kodaira [13], in a forthcoming
paper by Stone, and by others. Titchmarsh [19] gave explicit formulas for the
spectral projections in terms of the Green’s function, in the second-order case.
In 1952 F. I. Mautner [14] introduced a method of defining eigenfunctions in
terms of Radon-Nikodym derivatives, for a certain class of operators on L
spaces. This technique was used by Grding [7], [8] and Browder [4] to establish
eigenfunction expansions for elliptic partial differential operators, by HSrmander
[12] for a class of partial differential operators with constant coefficients which
are not elliptic in the usual sense, and by Bade and Schwartz [2]. A version of
Radon-Nikodym derivatives for reflexive Banach spaces due to I. M. Gelfand
[9] has been used by Gelfand and Kostyucenko [10] and by Browder [5] for
general partial differential operators. In this case the "eigenfunctions" obtained
are distributions.
Our purpose in this note is to establish eigenfunction expansions in a more

constructive and explicit fashion, and in such a way that the results will apply
to Hilbert spaces with norms other than the L norm (for instance, to spaces of
functions J with a norm involving various derivatives of f). We shall deal mainly
with a self-adjoint operator S such that the resolvent (S l) -1, Im(/) 0,
has a kernel function G(x, y; l) which we assume known. The kernel of the
spectral projections may then be determined by a sort of contour integral of
G (Theorem 9). This is similar to a formula of Titchmarsh [19] in the second-
order ordinary differential case. The kernels E(x, y; zX) of the spectral pro-
jection E(A), for A a bounded real Borel set, are positive definite functions.
Regarded as a function of A, this gives a measure whose values are positive
definite functions. For a separable Hilbert space there is a numerical measure
p such that E(A) 0 when p(A) 0. Extending the Radon-Nikodym de-
rivative to this situation (Theorem 1), we obtain a family of positive definite
functions e(x, y; ),), < X < o, such that E(x, y;
for all bounded Borel sets A. Now every positive definite function is the re-
producing kernel of a Hilbert space of functions. In particular e(x, y; X) is the
reproducing kernel of a space Hx It is then easily shown that the original
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