KERNEL FUNCTIONS AND EIGENFUNCTION EXPANSIONS

By Edward Nelson

1. Introduction. The problem of eigenfunction expansions is essentially that of exhibiting the spectral resolution of an operator in concrete analytical terms. In 1910 Hermann Weyl [20] achieved this for self-adjoint second-order ordinary differential operators. M. H. Stone [18] discussed this result in the light of the spectral theorem for self-adjoint operators on an abstract Hilbert space, and the result was extended to ordinary differential operators of higher order in varying degrees of generality by Coddington [6], Kodaira [13], in a forthcoming paper by Stone, and by others. Titchmarsh [19] gave explicit formulas for the spectral projections in terms of the Green's function, in the second-order case. In 1952 F. I. Mautner [14] introduced a method of defining eigenfunctions in terms of Radon-Nikodym derivatives, for a certain class of operators on L^2 spaces. This technique was used by Gårding [7], [8] and Browder [4] to establish eigenfunction expansions for elliptic partial differential operators, by Hörmander [12] for a class of partial differential operators with constant coefficients which are not elliptic in the usual sense, and by Bade and Schwartz [2]. A version of Radon-Nikodym derivatives for reflexive Banach spaces due to I. M. Gelfand [9] has been used by Gelfand and Kostyucenko [10] and by Browder [5] for general partial differential operators. In this case the "eigenfunctions" obtained are distributions.

Our purpose in this note is to establish eigenfunction expansions in a more constructive and explicit fashion, and in such a way that the results will apply to Hilbert spaces with norms other than the L^2 norm (for instance, to spaces of functions f with a norm involving various derivatives of f). We shall deal mainly with a self-adjoint operator S such that the resolvent $(S - l)^{-1}$, $\text{Im}(l) \neq 0$, has a kernel function G(x, y; l) which we assume known. The kernel of the spectral projections may then be determined by a sort of contour integral of G (Theorem 9). This is similar to a formula of Titchmarsh [19] in the secondorder ordinary differential case. The kernels $E(x, y; \Delta)$ of the spectral projection $E(\Delta)$, for Δ a bounded real Borel set, are positive definite functions. Regarded as a function of Δ , this gives a measure whose values are positive definite functions. For a separable Hilbert space there is a numerical measure ρ such that $E(\Delta) = 0$ when $\rho(\Delta) = 0$. Extending the Radon-Nikodym derivative to this situation (Theorem 1), we obtain a family of positive definite functions $e(x, y; \lambda)$, $-\infty < \lambda < \infty$, such that $E(x, y; \Delta) = \int_{\Delta} e(x, y; \lambda) d\rho(\lambda)$ for all bounded Borel sets Δ . Now every positive definite function is the reproducing kernel of a Hilbert space of functions. In particular $e(x, y; \lambda)$ is the reproducing kernel of a space H_{λ} . It is then easily shown that the original

Received May 1, 1957. The author is a National Science Foundation Fellow.