RETRACTS FROM NEIGHBORHOOD RETRACTS

By W. L. Strother and L. E. Ward, Jr.

1. Introduction. Linda Falcao Foulis [4] answered in the affirmative Wojdyslawski's question [11] of whether the space of closed subsets of a CAR* ($=$ retract of a Tychonoff cube) is a CAR*. We establish here that if X is a connected CANR* ($=$ closed neighborhood retract of a Tychonoff cube), then $S(X)$ (= space of closed subsets of X) has the fixed point property, and that if X is metric, then $S(X)$ is a CAR*. We conjecture that the metric condition in the last statement can be dropped. Analogies between neighborhood retracts and the null-homotopic fixed point property suggest the question: is the fixed point property in $S(X)$ equivalent to the null-homotopic fixed point property in X ?

2. Retracts from neighborhood retracts.

Theorem 1. Let X be a connected metric space. If X is a CANR*, then $S(X)$ is a CAR^{*}.

Proof. Since X is a retract of an open set U of a metrizable Tychonoff cube T, and since T is locally connected, U contains a closed, connected, locally connected set, P, which retracts onto X. It follows [9; 26] that X is locally connected. Therefore, [7, Theorem 8] X is an MCAR* and [8, Theorem 3] $S(X)$ is a CAR*.

The hypothesis that X be connected cannot be deleted from Theorem 1. It is easy to see that any finite space is a CANR*, but its space of closed subsets is not a CAR*.

That the converse of Theorem 1 does not hold is established by the following example. Let

$$
\begin{aligned}
A_{-2} & =\{(x, x): \quad 0 \leq x \leq 1\}, \\
A_{-1} & =\{(x, 0): \quad 0 \leq x \leq 1\}, \\
A_{n} & =\left\{\left(2^{-n}, y\right): \quad 0 \leq y \leq 2^{-n}\right\}, \quad n=0,1, \cdots .
\end{aligned}
$$

We define

$$
X=\bigcup_{n=-2}^{\infty}\left\{A_{n}\right\} .
$$

Received March 18, 1957; in revised form, May 27, 1957. Both authors acknowledge the support of the Bureau of Ordnance, U. S. Navy and the use of facilities at the Naval Ordnance Test Station, China Lake, California. This work was supported in part by the United States Air Force through the Air Force Office of Scientific Research and Development Command, under Contract No. AF 18(600)-1449. Reproduction in whole or in part is permitted for any purpose of the United States Government.

