CONGRUENCE PROPERTIES OF THE CLASSICAL
ORTHOGONAL POLYNOMIALS

By W. A. A-Saram anp L. CARLITZ

1. Introduction. In an earlier paper [1] the writers derived finite summation
formulas for the classical orthogonal functions analogous to certain integral
formulas. For example
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where n and ¢ are arbitrary positive integers, P,(x) is the Legendre polynomial,
and P,(x) is the associated Legendre function.
Another example is
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where m and n are arbitrary non-negative integers, and H,(x) denotes the
Hermite polynomial.

In the present paper we find congruential analogs of most of the results of
[1]. Let p = 2w + 1 be an odd prime. Then, for example, corresponding to
(1.1) and (1.2) we have
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Similar formulas are found for the Jacobi and Laguerre polynomials.
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