CONGRUENCE PROPERTIES OF THE CLASSICAL ORTHOGONAL POLYNOMIALS

By W. A. Al-Salam and L. Carlitz

1. Introduction. In an earlier paper [1] the writers derived finite summation formulas for the classical orthogonal functions analogous to certain integral formulas. For example

$$
\begin{align*}
\frac{1}{t} \sum_{r=0}^{t-1}\left\{x+\left(x^{2}-1\right)^{\frac{1}{2}} \cos (\phi\right. & \left.\left.+\frac{2 r \pi}{t}\right)\right\}^{n} \tag{1.1}\\
& =P_{n}(x)+2 \sum_{1 \leq s t \leq n} \frac{n!}{(n+s t)!} P_{n}^{s t}(x) \cos \mathrm{s} \phi
\end{align*}
$$

where n and t are arbitrary positive integers, $P_{n}(x)$ is the Legendre polynomial, and $P_{n}^{s}(x)$ is the associated Legendre function.

Another example is

$$
\begin{align*}
2^{(m+n) / 2} \frac{1}{t} \sum_{r=0}^{t-1} H_{m+n} & {\left[x\left\{1+\sec \left(\phi+\frac{2 r \pi}{t}\right)\right\}^{\frac{1}{2}}\right] } \\
& \cdot \cos ^{\frac{1}{2}(m+n)}\left(\phi+\frac{2 r \pi}{t}\right) \cos ^{\frac{1}{2}(m-n)}\left(\phi+\frac{2 r \pi}{t}\right) \tag{1.2}\\
= & \sum_{k} \frac{(m+n)!}{(m+k t)!(n-k t)!} H_{m+k t}(x) H_{n-k t}(x) \cos k t \phi
\end{align*}
$$

where m and n are arbitrary non-negative integers, and $H_{n}(x)$ denotes the Hermite polynomial.

In the present paper we find congruential analogs of most of the results of [1]. Let $p=2 w+1$ be an odd prime. Then, for example, corresponding to (1.1) and (1.2) we have

$$
\begin{align*}
-\sum_{r=1}^{p-1}\left\{x+\frac{1}{2}\left(x^{2}-1\right)^{\frac{1}{2}}(r+\right. & \left.\left.r^{-1}\right)\right\}^{n} \equiv P_{n}(x) \tag{1.3}\\
& +2 \sum_{1 \leq 2 w k \leq n} \frac{n!}{(n+2 w k)!} P_{n}^{2 w k}(x) \quad(\bmod p)
\end{align*}
$$

and

$$
\begin{align*}
&-\sum_{r=1}^{p-1} H_{m+n}\left\{x\left(1+\frac{2}{r^{2}+r^{-2}}\right)\right\}\left(r^{2}+r^{-2}\right)^{\frac{1}{2}(m+n)}\left(r^{m-n}+r^{n-m}\right) \tag{1.4}\\
& \equiv 2 \sum_{k}\binom{m+n}{m+k w} H_{m+k w}(x) H_{n-k w}(x) \quad(\bmod p)
\end{align*}
$$

Similar formulas are found for the Jacobi and Laguerre polynomials.
Received June 13, 1957.

