# INEQUALITIES FOR NORMAL AND HERMITIAN MATRICES 

By L. Mirsky

1. Throughout this note $A$ will stand for a complex $n \times n$ matrix with characteristic roots $\omega_{1}, \cdots, \omega_{n}$. The spread $s(A)$ of $A$ is defined by the equation

$$
s(A)=\max _{r, s}\left|\omega_{r}-\omega_{s}\right|
$$

In an earlier paper [5] (which will be referred to as $S$ ) I obtained an upper bound for $s(A)$, valid for every matrix $A$, and lower bounds for the case of Hermitian and normal matrices. This last case is now to be pursued a little further. In the first place it will be shown that the lower estimates for $s(A)$, obtained previously, are best possible. Then a number of further estimates will be derived, and $s(A)$ will be characterized by various maximum properties. Finally, a function of the characteristic roots of $A$, more general than $s(A)$, will be considered.

We shall denote by $a_{r s}$ the ( $r, s$ )-th element of $A$, and by $e_{k}$ the column vector whose $k$-th component is 1 while all other components are 0 . Transposed conjugates will, as usual, be indicated by an asterisk.
2. We begin with a number of results relating to Hermitian matrices.

Theorem 1. If $A$ is a Hermitian matrix, then

$$
s(A)=2 \sup _{u, v}\left|u^{*} A v\right|
$$

where the upper bound is taken with respect to all pairs of orthonormal vectors $u, v$.
Assume, without loss of generality, that $s(A)=\omega_{1}-\omega_{2}$. Let $T$ be a unitary matrix such that

$$
T^{*} A T=\operatorname{diag}\left(\omega_{1}, \omega_{2}, \cdots, \omega_{n}\right)
$$

If the first and the second columns of $T$ are denoted by $x$ and $y$ respectively, then $\|x\|=\|y\|=1, x^{*} y=0$; and $x^{*} A x=\omega_{1}, y^{*} A y=\omega_{2}$. Hence

$$
\begin{equation*}
s(A)=x^{*} A x-y^{*} A y \tag{1}
\end{equation*}
$$

Now put

$$
u_{0}=(x+i y) / \sqrt{2}, \quad v_{0}=(x-i y) / \sqrt{2}, \quad p=x^{*} A y
$$

Then $\left\|u_{0}\right\|=\left\|v_{0}\right\|=1, u_{0}^{*} v_{0}=0$; and using (1) and the fact that $A$ is Hermitian, we obtain

$$
u_{0}^{*} A v_{0}=\frac{1}{2}\{s(A)-2 i \Re p\} .
$$

Received January 24, 1957.

