SOME POLYNOMIALS RELATED TO THETA FUNCTIONS

By L. Carlitz

1. Let

$$
H_{n}(x)=H_{n}(x, q)=\sum_{r=0}^{n}\left[\begin{array}{l}
n \tag{1}\\
r
\end{array}\right] x^{r},
$$

where

$$
\left[\begin{array}{c}
n \\
r
\end{array}\right]=\frac{(q)_{n}}{(q)_{r}(q)_{n-r}}, \quad(q)_{n}=(1-q)\left(1-q^{2}\right) \cdots\left(1-q^{n}\right), \quad(q)_{0}=1
$$

Alternatively $H_{n}(x)$ can be defined by means of

$$
\begin{equation*}
\prod_{r=0}^{\infty}\left(1-q^{r} t\right)^{-1}\left(1-q^{r} x t\right)^{-1}=\sum_{n=0}^{\infty} H_{n}(x) \frac{t^{n}}{(q)_{n}} \quad \quad(|q|<1) \tag{2}
\end{equation*}
$$

Polynomials closely related to $H_{n}(x)$ have been studied by Wigert [7] and Szegö [5]; see also Hahn [4]. The polynomial $H_{n}(x)$ is in some respects an analog of the Hermite polynomial. The writer [3] showed that

$$
H_{m+n}(x)=\sum_{r=0}^{\min (m, n)}(-1)^{r} q^{\frac{1}{r}(r-1)}\left[\begin{array}{l}
m \tag{3}\\
r
\end{array}\right]\left[\begin{array}{c}
n \\
r
\end{array}\right](q)_{r} x^{r} H_{m-r}(x) H_{n-r}(x) .
$$

This result was proved by induction. It may be of interest to point out that (3) can be proved by a method analogous to that used by Burchnall [1] in proving the corresponding formula for Hermite polynomials.

Indeed if we define the operator E^{n} by means of

$$
\begin{equation*}
E^{n} f(x)=f\left(q^{n} x\right) \tag{4}
\end{equation*}
$$

and Δ^{n} by means of

$$
\begin{equation*}
\Delta^{n}=(1-E)(q-E) \cdots\left(q^{n-1}-E\right) \tag{5}
\end{equation*}
$$

then it is easily verified that

$$
E^{n}=\sum_{r=0}^{n}(-1)^{r}\left[\begin{array}{c}
n \tag{6}\\
r
\end{array}\right] \Delta^{r}
$$

and

$$
\Delta^{n}=\sum_{r=0}^{n}(-1)^{r}\left[\begin{array}{c}
n \tag{7}\\
r
\end{array}\right] q^{\frac{1}{2}(n-r)(n-r-1)} E^{r} .
$$

Received February 28, 1957.

