A PROPERTY OF INTEGRAL MEANS

By Casper Goffman

The theory of ordinary convergence of singular integrals is fully developed. However, whether or not the convergence holds with respect to a given norm has only been established in special cases.

An example is the space $L_{\nu}(0, 1)$, $p \geq 1$. If $\{k_n(t)\}$ is a sequence of functions which satisfies conditions such as

a) $\lim_{n\to\infty} \int_{-\infty}^{\infty} k_n(t) dt = 1$, b) $\int_{-\infty}^{\infty} |k_n(t)| dt < M$ for fixed M and all n, and c) $\lim_{n\to\infty} \int_{|t|<\delta} |k_n(t)| dt = 0$, for every $\delta > 0$, then the sequence $x_n(t) = \int_0^1 k_n(t-u)x(u) du$, $n = 1, 2, \cdots$, converges in L_n to x(t).

The proof of this fact, [4], leans heavily on the Hölder inequality. It may accordingly be extended to other spaces such as those of Orlicz, [6], and Lorentz, [5], for which there are analogous inequalities.

S. Bochner, [2], has stated as a heuristic principle that a Banach space X of summable functions has the property stated above for L_p if $x(t) \in X$ implies $x(t+u) \in X$, for every u, ||x(t+u)|| = ||x(t)||, and x(t+u) is a continuous function of u in X.

This statement is not true in full generality, as the following example shows. Let x(t) be defined and summable on the set [0, 1) of real numbers modulo 1, let $\varphi(t)$ be an indefinite integral of x(t), and suppose that the translations $\varphi(t+u)$, $0 \le u < 1$, of $\varphi(t)$ form a linearly independent set of functions. For example

$$x(t) = 1,$$
 $\frac{1}{4} < t < \frac{3}{4},$
= 0, $0 \le t < \frac{1}{4}$ and $\frac{3}{4} \le t < 1,$

has this property.

Let $\{h_n\}$ be a sequence of positive numbers, converging to 0, which are linearly independent over the rationals.

Now, for every h > 0, let

$$x^{h}(t) = \frac{1}{h} \int_{0}^{h} x(t+u) du = \frac{1}{h} [\varphi(t+h) - \varphi(t)].$$

We show that the set

$$A = [x^{h_n}(t+u)], \quad 0 \le u < 1, \quad n = 1, 2, \dots,$$

is composed of linearly independent functions. Suppose, on the contrary, that

$$\sum_{i=1}^{n} \frac{c_i}{h_i} \left[\varphi(t + h_i + k_i) - \varphi(t + k_i) \right] = 0,$$

Received February 4, 1957. This note is related to work sponsored by National Science Foundation grant NSF G 2267 on ordered systems.