THE TEMPORAL BEHAVIOUR OF A WAVE PACKET

By Eberhard Hopf

In this note we consider trigonometric integrals of the form

$$
\begin{equation*}
F(x, t)=\int f(\alpha) \exp [i(\alpha x+g(\alpha) t)] d \alpha \tag{1}
\end{equation*}
$$

where $x=\left(x_{1}, \cdots, x_{n}\right), \alpha=\left(\alpha_{1}, \cdots, \alpha_{n}\right)$, with x and α, as well as t, real, $\alpha x=\sum \alpha_{\nu} x_{\nu}, d \alpha=d \alpha_{1} \cdots d \alpha_{n}$, and where the integration extends through the entire α-space. The function $g(\alpha)$ is supposed to be real-valued. We prove the following
(1) Theorem. Let f be Lebesgue-integrable in α-space. Suppose that the α-space is the union of three sets with the following properties, respectively: a) $f=0$, b) has measure zero, c) open set with $g(\alpha)$ of class $C^{\prime \prime}$ therein, and with the second derivatives $g_{, \nu \mu}$ never zero simultaneously. Then

$$
\begin{equation*}
\sup _{x}|F(x, t)| \rightarrow 0 \quad \text { as } \quad t \rightarrow \infty \tag{2}
\end{equation*}
$$

This theorem has the following immediate consequence:
(2) Theorem. Let f be Lebesgue-integrable and let $g(\alpha)$ be analytic throughout α-space. Then either (2) holds or $F=F(x-c t) \exp$ (iat), where a and c are real constants, c being a vector.

In fact, an analytic function in α-space vanishes either everywhere or only in a subset of measure zero. This implies that either g is linear or that the points α where all the second derivatives vanish form a set of measure zero. In the first case we find that $g=-\sum \alpha_{\nu} c_{\nu}+a, F=F(x-c t)$ times $\exp (i a t)$, whereas in the second case Theorem 1 applies.

In physical terms, (1) represents a wave packet with grad g as the vector of the group velocity. Under the condition of analyticity, as expressed in Theorem 2 , the group velocity is either constant or not. In the first case, the wave packet travels essentially as a rigid whole, whereas, in the second case, the waves are dispersed and the resultant (1) dies down uniformly in x-space.

The actual core of Theorem 1 is its one-dimensional case. The author proved the theorem when he found that he needed it for the discussion of the stability properties of the solutions of a certain space-time integro-differential system (see [1], the fourth lecture). We start by proving the one-dimensional case of the theorem.
(3) Theorem. $n=1$. The hypotheses are the same as in the first theorem, with the difference that the set c) is the union of a sequence of α-intervals in each

Received January 15, 1957.

