COMMENTS ON "FLAT" OSCILLATIONS OF LOW FREQUENCY

BY AUREL WINTNER

Let D_f denote the differential equation x'' + f(t)x = 0 in which the coefficient function f is given, as real-valued and continuous, for large positive t. With reference to any fixed index α , let f(t) or the corresponding D_f be called of class α (in symbols: $f \in \alpha$) if $x(t) = O(t^{\alpha})$, where $t \to \infty$, holds for every solution x(t) of D_f . By $f(\mathfrak{e})\alpha$ will be meant that $f \in \beta$ does or does not hold according as $\beta = \alpha$ or $\beta < \alpha$. Finally, $f \in \alpha$ will mean that every solution x(t) of D_f , besides being $O(t^{\alpha})$, has a derivative satisfying $x'(t) = O(t^{r-1})$ for every $\gamma > \alpha$.

The index $\alpha = \frac{1}{2}$ is of particular interest. For it was pointed out in [4] that D_f must be oscillatory if $f \in \frac{1}{2}$, whereas D_f can be non-oscillatory if $f \in \alpha$ holds for every $\alpha > \frac{1}{2}$ only. The second of these assertions follows by observing that if $D(\mu)$ denotes the case $f(t) = \mu^2/t^2$ of D_f , where μ is a constant (cf. [2]), then the general solution of $D(\frac{1}{2})$ is a superposition of $x(t) = t^{\frac{1}{2}}$ and $x(t) = t^{\frac{1}{2}} \log t$.

If $0 < \mu < \frac{1}{2}$, then $D(\mu)$ is non-oscillatory and of class α , where $\alpha = \alpha(\mu)$ is the larger of the two roots of the quadratic equation $\alpha(\alpha - 1) + \mu^2 = 0$ (in fact, $x(t) = t^{\alpha}$ is a solution for either root). But if $\frac{1}{2} < \mu < \infty$, then the two roots are of the form $\alpha = \frac{1}{2} \pm i\lambda$, where $\lambda = \lambda(\mu)$ is positive (and, incidentally, $\lambda(\frac{1}{2} + 0) = 0$ and $\lambda(\infty) = \infty$); so that $D(\mu)$ becomes oscillatory, the general solution being a superposition of $t^{\frac{1}{2}}\cos(\lambda \log t)$ and $t^{\frac{1}{2}}\sin(\lambda \log t)$. Accordingly, if $f_{\mu}(t) = \mu^2/t^2$, where $\frac{1}{2} < \mu < \infty$, then $f_{\mu} \varepsilon \frac{1}{2}$ and, what is more, both $f_{\mu}(\varepsilon)\frac{1}{2}$ and $f_{\mu} \varepsilon^* \frac{1}{2}$ hold. It might appear unexpected that the sharp relation $f_{\mu}(\varepsilon)\frac{1}{2}$ is independent of the numerical value of $\mu (> \frac{1}{2})$.

Consider now an unspecified $D_f: x'' + f(t)x = 0$ (so that $f(t) = \mu^2/t^2$ is not assumed) and an unspecified $D_g: y'' + g(t)y = 0$. Suppose that $f \in \frac{1}{2}$ and that g(t) is so "close" to f(t) for large t as to satisfy the following condition (C):

(C)
$$\int_{-\infty}^{\infty} t \mid f(t) - g(t) \mid dt < \infty.$$

Then, as $t \to \infty$, the solutions x(t) of D_f and their derivatives x'(t) are (for $t \to \infty$) in asymptotic one-to-one correspondence with the solutions y(t) of D_g and their derivatives y'(t). In fact, if $x_1(t)$, $x_2(t)$ is any pair of solutions x(t) of D_f , then $f \in \frac{1}{2}$ and (C) imply that

$$\int_{-\infty}^{\infty} (|x_1(t)|^2 + |x_2(t)|^2) |f(t) - g(t)| dt < \infty.$$

Hence, the assertion, concerning the asymptotic one-to-one correspondence, can be concluded from a general theorem on "small perturbations" [5].

Clearly, the result contains the following corollaries: $f \, \epsilon \, \frac{1}{2}$ and (C) imply that $g \, \epsilon \, \frac{1}{2}$, and $f(\epsilon) \frac{1}{2}$ and (C) imply that $g(\epsilon) \frac{1}{2}$, finally $f \, \epsilon^* \, \frac{1}{2}$ and (C) imply that $g \, \epsilon^* \, \frac{1}{2}$

Received February 1, 1957.