COMMENTS ON "FLAT" OSCILLATIONS OF LOW FREQUENCY

By Aurel Wintner

Let D_{f} denote the differential equation $x^{\prime \prime}+f(t) x=0$ in which the coefficient function f is given, as real-valued and continuous, for large positive t. With reference to any fixed index α, let $f(t)$ or the corresponding D_{f} be called of class α (in symbols: $f \varepsilon \alpha$) if $x(t)=O\left(t^{\alpha}\right)$, where $t \rightarrow \infty$, holds for every solution $x(t)$ of D_{f}. By $f(\varepsilon) \alpha$ will be meant that $f \varepsilon \beta$ does or does not hold according as $\beta=\alpha$ or $\beta<\alpha$. Finally, $f \varepsilon^{*} \alpha$ will mean that every solution $x(t)$ of D_{f}, besides being $O\left(t^{\alpha}\right)$, has a derivative satisfying $x^{\prime}(t)=O\left(t^{\gamma-1}\right)$ for every $\gamma>\alpha$.

The index $\alpha=\frac{1}{2}$ is of particular interest. For it was pointed out in [4] that D_{f} must be oscillatory if $f \varepsilon \frac{1}{2}$, whereas D_{f} can be non-oscillatory if $f \varepsilon \alpha$ holds for every $\alpha>\frac{1}{2}$ only. The second of these assertions follows by observing that if $D(\mu)$ denotes the case $f(t)=\mu^{2} / t^{2}$ of D_{f}, where μ is a constant (cf. [2]), then the general solution of $D\left(\frac{1}{2}\right)$ is a superposition of $x(t)=t^{\frac{1}{2}}$ and $x(t)=t^{\frac{1}{2}} \log t$.

If $0<\mu<\frac{1}{2}$, then $D(\mu)$ is non-oscillatory and of class α, where $\alpha=\alpha(\mu)$ is the larger of the two roots of the quadratic equation $\alpha(\alpha-1)+\mu^{2}=0$ (in fact, $x(t)=t^{\alpha}$ is a solution for either root). But if $\frac{1}{2}<\mu<\infty$, then the two roots are of the form $\alpha=\frac{1}{2} \pm i \lambda$, where $\lambda=\lambda(\mu)$ is positive (and, incidentally, $\lambda\left(\frac{1}{2}+0\right)=0$ and $\left.\lambda(\infty)=\infty\right)$; so that $D(\mu)$ becomes oscillatory, the general solution being a superposition of $t^{\frac{1}{2}} \cos (\lambda \log t)$ and $t^{\frac{1}{2}} \sin (\lambda \log t)$. Accordingly, if $f_{\mu}(t)=\mu^{2} / t^{2}$, where $\frac{1}{2}<\mu<\infty$, then $f_{\mu} \boldsymbol{\varepsilon} \frac{1}{2}$ and, what is more, both $f_{\mu}(\varepsilon) \frac{1}{2}$ and $f_{\mu} \varepsilon^{*} \frac{1}{2}$ hold. It might appear unexpected that the sharp relation $f_{\mu}(\varepsilon) \frac{1}{2}$ is independent of the numerical value of $\mu\left(>\frac{1}{2}\right)$.

Consider now an unspecified $D_{f}: x^{\prime \prime}+f(t) x=0$ (so that $f(t)=\mu^{2} / t^{2}$ is not assumed) and an unspecified $D_{g}: y^{\prime \prime}+g(t) y=0$. Suppose that $f \varepsilon \frac{1}{2}$ and that $g(t)$ is so "close" to $f(t)$ for large t as to satisfy the following condition (C) :

$$
\begin{equation*}
\int^{\infty} t|f(t)-g(t)| d t<\infty \tag{C}
\end{equation*}
$$

Then, as $t \rightarrow \infty$, the solutions $x(t)$ of D_{f} and their derivatives $x^{\prime}(t)$ are (for $t \rightarrow \infty)$ in asymptotic one-to-one correspondence with the solutions $y(t)$ of D_{g} and their derivatives $y^{\prime}(t)$. In fact, if $x_{1}(t), x_{2}(t)$ is any pair of solutions $x(t)$ of D_{f}, then $f \varepsilon \frac{1}{2}$ and (C) imply that

$$
\int^{\infty}\left(\left|x_{1}(t)\right|^{2}+\left|x_{2}(t)\right|^{2}\right)|f(t)-g(t)| d t<\infty
$$

Hence, the assertion, concerning the asymptotic one-to-one correspondence, can be concluded from a general theorem on "small perturbations" [5].

Clearly, the result contains the following corollaries: $f \varepsilon \frac{1}{2}$ and (C) imply that $g \varepsilon \frac{1}{2}$, and $f(\boldsymbol{\varepsilon}) \frac{1}{2}$ and (C) imply that $g(\boldsymbol{\varepsilon}) \frac{1}{2}$, finally $f \varepsilon^{*} \frac{1}{2}$ and (C) imply that $g \varepsilon^{*} \frac{1}{2}$

Received February 1, 1957.

