CONVEX FUNCTIONS OF QUADRATIC FORMS

By Marvin Marcus

The purpose of this paper is to obtain some extreme value results for convex functions of Hermitian forms (Theorem 1). In Theorem 2 we investigate conditions under which extremal sets span invariant subspaces. In the remainder of the paper we generalize some recent results of K. Fan [4, 5] and F. Rellich [9]. Let $\lambda^{(1)}$, \cdots , $\lambda^{(k)}$ be fixed real *n*-vectors,

$$\lambda^{(i)} = (\lambda_1^{(i)}, \dots, \lambda_n^{(i)}) \qquad j = 1, \dots, k \leq n$$

and let

$$I_i = [\min_{t} \lambda_t^{(i)}, \max_{t} \lambda_t^{(i)}].$$

Let R be defined as the Cartesian product

$$R = I_1 \times \cdots \times I_k.$$

By Ω_n we shall denote the convex hull of all *n*-square permutation matrices. This is known to be the polyhedron of all *n*-square doubly stochastic (d.s.) matrices [1, 2]. If S is any *n*-square complex matrix, then S(i) will denote the i-th row of S. Let $f(t) = f(t_1, \dots, t_k)$ be defined and bounded on R and let σ be a 1-1 function on the integers $1, \dots, k$ to the integers $1, \dots, n$; we define a pair of numbers associated with f as follows:

$$m = \min_{\sigma} f(\lambda_{\sigma(1)}^{(1)}, \dots, \lambda_{\sigma(k)}^{(k)})$$

$$M = \max_{\sigma} f(\lambda_{\sigma(1)}^{(1)}, \dots, \lambda_{\sigma(k)}^{(k)}).$$

Now let A_i , $j=1, \dots, k$, be complex *n*-square Hermitian matrices which commute pairwise. It is known that the A_i have a common set of orthonormal (0.n.) eigenvectors u_1, \dots, u_n and we choose our notation so that

$$A_i u_i = \lambda_i^{(i)} u_i$$
 $i = 1, \dots, n$ $i = 1, \dots, k.$

That is, $\lambda_i^{(i)}$ $i = 1, \dots, n$ are the eigenvalues of A_i .

Theorem 1. If f is convex on R then

$$\max_{(x_i,x_j)=\delta_{ij}} f((A_1x_1, x_1), \cdots, (A_kx_k, x_k)) = M$$

Received August 6, 1956; in revised form, April 10, 1957. This work was completed under an N.R.C.-N.B.S. Postdoctoral Research Associateship at the National Bureau of Standards, Washington, D. C.